Fractional Dynamics, Anomalous Transport and Plasma Science


Book Description

This book collects interrelated lectures on fractal dynamics, anomalous transport and various historical and modern aspects of plasma sciences and technology. The origins of plasma science in connection to electricity and electric charges and devices leading to arc plasma are explored in the first contribution by Jean-Marc Ginoux and Thomas Cuff. The second important historic connection with plasmas was magnetism and the magnetron. Victor J. Law and Denis P. Dowling, in the second contribution, review the history of the magnetron based on the development of thermionic diode valves and related devices. In the third chapter, Christos H Skiadas and Charilaos Skiadas present and apply diffusion theory and solution strategies to a number of stochastic processes of interest. Anomalous diffusion by the fractional Fokker-Planck equation and Lévy stable processes are studied by Johan Anderson and Sara Moradi in the fourth contribution. They consider the motion of charged particles in a 3-dimensional magnetic field in the presence of linear friction and of a stochastic electric field. Analysis of low-frequency instabilities in a low-temperature magnetized plasma is presented by Dan-Gheorghe Dimitriu, Maricel Agop in the fifth chapter. The authors refer to experimental results of the Innsbruck Q-machine and provide an analytical formulation of the related theory. In chapter six, Stefan Irimiciuc, Dan-Gheorghe Dimitriu, Maricel Agop propose a theoretical model to explain the dynamics of charged particles in a plasma discharge with a strong flux of electrons from one plasma structure to another. The theory and applications of fractional derivatives in many-particle disordered large systems are explored by Z.Z. Alisultanov, A.M. Agalarov, A.A. Potapov, G.B. Ragimkhanov. In chapter eight, Maricel Agop, Alina Gavrilut ̧ and Gabriel Crumpei explore the motion of physical systems that take place on continuous but non-differentiable curves (fractal curves). Finally in the last chapter S.L. Cherkas and V.L. Kalashnikov consider the perturbations of a plasma consisting of photons, baryons, and electrons in a linearly expanding (Milne-like) universe taking into account the metric tensor and vacuum perturbations.




Anomalous Transport


Book Description

This multi-author reference work provides a unique introduction to the currently emerging, highly interdisciplinary field of those transport processes that cannot be described by using standard methods of statistical mechanics. It comprehensively summarizes topics ranging from mathematical foundations of anomalous dynamics to the most recent experiments in this field. In so doing, this monograph extracts and emphasizes common principles and methods from many different disciplines while providing up-to-date coverage of this new field of research, considering such diverse applications as plasma physics, glassy material, cell science, and socio-economic aspects. The book will be of interest to both theorists and experimentalists in nonlinear dynamics, statistical physics and stochastic processes. It also forms an ideal starting point for graduate students moving into this area. 18 chapters written by internationally recognized experts in this field provide in-depth introductions to fundamental aspects of anomalous transport.




Fractional Diffusion Equations and Anomalous Diffusion


Book Description

Presents a unified treatment of anomalous diffusion problems using fractional calculus in a wide range of applications across scientific and technological disciplines.




Hadron models and related New Energy issues


Book Description

The present book covers a wide-range of issues from alternative hadron models to their likely implications to New Energy research, including alternative interpretation of low-energy reaction (coldfusion) phenomena.The authors explored some new approaches to describe novel phenomena in particle physics. M Pitkanen introduces his nuclear string hypothesis derived from his Topological Geometrodynamics theory, while E. Goldfain discusses a number of nonlinear dynamics methods, including bifurcation, pattern formation (complex Ginzburg-Landau equation) to describe elementary particle masses. Fu Yuhua discusses a plausible method for prediction of phenomena related to New Energy development.F. Smarandache discusses his unmatter hypothesis, and A. Yefremov et al. discuss Yang-Mills field from Quaternion Space Geometry. Diego Rapoport discusses link between Torsion fields and Hadronic Mechanic.A.H. Phillips discusses semiconductor nanodevices, while V. and A. Boju discuss Digital Discrete and Combinatorial methods and their likely implications to New Energy research. Pavel Pintr et al. describe planetary orbit distance from modified Schrodinger equation, and M. Pereira discusses his new Hypergeometrical description of Standard Model of elementary particles.The present volume will be suitable for researchers interested in New Energy issues, in particular their link with alternative hadron models and interpretation.While some of these discussions may be found a bit too theoretical, our view is that once these phenomena can be put into rigorous theoretical framework, thereafter more 'open-minded' physicists may be more ready to consider these New Energy methods more seriously. Our basic proposition in the present book is that considering these new theoretical insights, one can expect there are new methods to generate New Energy technologies which are clearly within reach of human knowledge in the coming years.




Nonlinear Differential Equations in Physics


Book Description

This book discusses various novel analytical and numerical methods for solving partial and fractional differential equations. Moreover, it presents selected numerical methods for solving stochastic point kinetic equations in nuclear reactor dynamics by using Euler–Maruyama and strong-order Taylor numerical methods. The book also shows how to arrive at new, exact solutions to various fractional differential equations, such as the time-fractional Burgers–Hopf equation, the (3+1)-dimensional time-fractional Khokhlov–Zabolotskaya–Kuznetsov equation, (3+1)-dimensional time-fractional KdV–Khokhlov–Zabolotskaya–Kuznetsov equation, fractional (2+1)-dimensional Davey–Stewartson equation, and integrable Davey–Stewartson-type equation. Many of the methods discussed are analytical–numerical, namely the modified decomposition method, a new two-step Adomian decomposition method, new approach to the Adomian decomposition method, modified homotopy analysis method with Fourier transform, modified fractional reduced differential transform method (MFRDTM), coupled fractional reduced differential transform method (CFRDTM), optimal homotopy asymptotic method, first integral method, and a solution procedure based on Haar wavelets and the operational matrices with function approximation. The book proposes for the first time a generalized order operational matrix of Haar wavelets, as well as new techniques (MFRDTM and CFRDTM) for solving fractional differential equations. Numerical methods used to solve stochastic point kinetic equations, like the Wiener process, Euler–Maruyama, and order 1.5 strong Taylor methods, are also discussed.




Long-range Interactions, Stochasticity and Fractional Dynamics


Book Description

In memory of Dr. George Zaslavsky, "Long-range Interactions, Stochasticity and Fractional Dynamics" covers the recent developments of long-range interaction, fractional dynamics, brain dynamics and stochastic theory of turbulence, each chapter was written by established scientists in the field. The book is dedicated to Dr. George Zaslavsky, who was one of three founders of the theory of Hamiltonian chaos. The book discusses self-similarity and stochasticity and fractionality for discrete and continuous dynamical systems, as well as long-range interactions and diluted networks. A comprehensive theory for brain dynamics is also presented. In addition, the complexity and stochasticity for soliton chains and turbulence are addressed. The book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering. Dr. Albert C.J. Luo is a Professor at Southern Illinois University Edwardsville, USA. Dr. Valentin Afraimovich is a Professor at San Luis Potosi University, Mexico.




Hamiltonian Chaos Beyond the KAM Theory


Book Description

“Hamiltonian Chaos Beyond the KAM Theory: Dedicated to George M. Zaslavsky (1935—2008)” covers the recent developments and advances in the theory and application of Hamiltonian chaos in nonlinear Hamiltonian systems. The book is dedicated to Dr. George Zaslavsky, who was one of three founders of the theory of Hamiltonian chaos. Each chapter in this book was written by well-established scientists in the field of nonlinear Hamiltonian systems. The development presented in this book goes beyond the KAM theory, and the onset and disappearance of chaos in the stochastic and resonant layers of nonlinear Hamiltonian systems are predicted analytically, instead of qualitatively. The book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering. Dr. Albert C.J. Luo is a Professor at Southern Illinois University Edwardsville, USA. Dr. Valentin Afraimovich is a Professor at San Luis Potosi University, Mexico.




Advanced Numerical Methods in Applied Sciences


Book Description

The use of scientific computing tools is currently customary for solving problems at several complexity levels in Applied Sciences. The great need for reliable software in the scientific community conveys a continuous stimulus to develop new and better performing numerical methods that are able to grasp the particular features of the problem at hand. This has been the case for many different settings of numerical analysis, and this Special Issue aims at covering some important developments in various areas of application.




Jamming, Yielding, and Irreversible Deformation in Condensed Matter


Book Description

This collection ot ten tutorial reviews by leading researchers in the field introduces and renews recent advances on irreversible deformation phenomena in solid state and soft condensed matter physics. The focus in applications is on amorphous materials, crystalline solids under stress and more generally, elastic manifolds driven by external processes. This book addresses in particular nonspecialists and graduate students wishing to enter the field.




Fractional Operators with Constant and Variable Order with Application to Geo-hydrology


Book Description

Fractional Operators with Constant and Variable Order with Application to Geo-hydrology provides a physical review of fractional operators, fractional variable order operators, and uncertain derivatives to groundwater flow and environmental remediation. It presents a formal set of mathematical equations for the description of groundwater flow and pollution problems using the concept of non-integer order derivative. Both advantages and disadvantages of models with fractional operators are discussed. Based on the author's analyses, the book proposes new techniques for groundwater remediation, including guidelines on how chemical companies can be positioned in any city to avoid groundwater pollution. - Proposes new aquifer derivatives for leaky, confined and unconfined formations - Presents useful aids for applied scientists and engineers seeking to solve complex problems that cannot be handled using constant fractional order derivatives - Provides a real physical interpretation of operators relevant to groundwater flow problems - Models both fractional and variable order derivatives, presented together with uncertainties analysis