Fractional Hermite-Hadamard Inequalities


Book Description

This book extends classical Hermite-Hadamard type inequalities to the fractional case via establishing fractional integral identities, and discusses Riemann-Liouville and Hadamard integrals, respectively, by various convex functions. Illustrating theoretical results via applications in special means of real numbers, it is an essential reference for applied mathematicians and engineers working with fractional calculus. Contents Introduction Preliminaries Fractional integral identities Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals Hermite-Hadamard inequalities involving Hadamard fractional integrals




Fractional Hermite-Hadamard Inequalities


Book Description

This book extends classical Hermite-Hadamard type inequalities to the fractional case via establishing fractional integral identities, and discusses Riemann-Liouville and Hadamard integrals, respectively, by various convex functions. Illustrating theoretical results via applications in special means of real numbers, it is an essential reference for applied mathematicians and engineers working with fractional calculus. Contents Introduction Preliminaries Fractional integral identities Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals Hermite-Hadamard inequalities involving Hadamard fractional integrals




Fractional Order Analysis


Book Description

A guide to the new research in the field of fractional order analysis Fractional Order Analysis contains the most recent research findings in fractional order analysis and its applications. The authors—noted experts on the topic—offer an examination of the theory, methods, applications, and the modern tools and techniques in the field of fractional order analysis. The information, tools, and applications presented can help develop mathematical methods and models with better accuracy. Comprehensive in scope, the book covers a range of topics including: new fractional operators, fractional derivatives, fractional differential equations, inequalities for different fractional derivatives and fractional integrals, fractional modeling related to transmission of Malaria, and dynamics of Zika virus with various fractional derivatives, and more. Designed to be an accessible text, several useful, relevant and connected topics can be found in one place, which is crucial for an understanding of the research problems of an applied nature. This book: Contains recent development in fractional calculus Offers a balance of theory, methods, and applications Puts the focus on fractional analysis and its interdisciplinary applications, such as fractional models for biological models Helps make research more relevant to real-life applications Written for researchers, professionals and practitioners, Fractional Order Analysis offers a comprehensive resource to fractional analysis and its many applications as well as information on the newest research.




Fractional Calculus


Book Description

This title will give readers the possibility of finding very important mathematical tools for working with fractional models and solving fractional differential equations, such as a generalization of Stirling numbers in the framework of fractional calculus and a set of efficient numerical methods.




Fractional Differentiation Inequalities


Book Description

In this book the author presents the Opial, Poincaré, Sobolev, Hilbert, and Ostrowski fractional differentiation inequalities. Results for the above are derived using three different types of fractional derivatives, namely by Canavati, Riemann-Liouville and Caputo. The univariate and multivariate cases are both examined. Each chapter is self-contained. The theory is presented systematically along with the applications. The application to information theory is also examined. This monograph is suitable for researchers and graduate students in pure mathematics. Applied mathematicians, engineers, and other applied scientists will also find this book useful.




Convex Functions, Partial Orderings, and Statistical Applications


Book Description

This research-level book presents up-to-date information concerning recent developments in convex functions and partial orderings and some applications in mathematics, statistics, and reliability theory. The book will serve researchers in mathematical and statistical theory and theoretical and applied reliabilists. Presents classical and newly published results on convex functions and related inequalities Explains partial ordering based on arrangement and their applications in mathematics, probability, statsitics, and reliability Demonstrates the connection of partial ordering with other well-known orderings such as majorization and Schur functions Will generate further research and applications




An Introduction to the Fractional Calculus and Fractional Differential Equations


Book Description

Commences with the historical development of fractional calculus, its mathematical theory—particularly the Riemann-Liouville version. Numerous examples and theoretical applications of the theory are presented. Features topics associated with fractional differential equations. Discusses Weyl fractional calculus and some of its uses. Includes selected physical problems which lead to fractional differential or integral equations.




Classical and New Inequalities in Analysis


Book Description

This volume presents a comprehensive compendium of classical and new inequalities as well as some recent extensions to well-known ones. Variations of inequalities ascribed to Abel, Jensen, Cauchy, Chebyshev, Hölder, Minkowski, Stefferson, Gram, Fejér, Jackson, Hardy, Littlewood, Po'lya, Schwarz, Hadamard and a host of others can be found in this volume. The more than 1200 cited references include many from the last ten years which appear in a book for the first time. The 30 chapters are all devoted to inequalities associated with a given classical inequality, or give methods for the derivation of new inequalities. Anyone interested in equalities, from student to professional, will find their favorite inequality and much more.




Convex Functions and Their Applications


Book Description

Thorough introduction to an important area of mathematics Contains recent results Includes many exercises




Dynamic Inequalities On Time Scales


Book Description

This is a monograph devoted to recent research and results on dynamic inequalities on time scales. The study of dynamic inequalities on time scales has been covered extensively in the literature in recent years and has now become a major sub-field in pure and applied mathematics. In particular, this book will cover recent results on integral inequalities, including Young's inequality, Jensen's inequality, Holder's inequality, Minkowski's inequality, Steffensen's inequality, Hermite-Hadamard inequality and Čebyšv's inequality. Opial type inequalities on time scales and their extensions with weighted functions, Lyapunov type inequalities, Halanay type inequalities for dynamic equations on time scales, and Wirtinger type inequalities on time scales and their extensions will also be discussed here in detail.