Fracture and Fatigue, Volume 7


Book Description

Fracture and Fatigue, Volume 7: Proceedings of the 2013 Annual Conference on Experimental and Applied Mechanics, the seventh volume of eight from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: Microstructural Effects in Fatigue & Fracture Fracture of Interfaces Fracture of Composites and Interface Cracks Fatigue & Fracture: Environmental & Loading Effects Fracture & Digital Image Correlation




Fracture, Fatigue, Failure and Damage Evolution, Volume 7


Book Description

Fracture, Fatigue, Failure and Damage Evolution, Volume 7 of the Proceedings of the 2017 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the seventh volume of nine from the Conference, brings together contributions to this important area of research and engineering. Session organizers include: Jay Carroll, Shuman Xia, Allison Beese, Ryan Berke, Garrett Pataky, Samantha Daly, Kavan Hazeli, Antonios Kontsos, Omer Ozgur Capraz, Scott Grutzik, Onome Scott-Emaukpor The collection presents early findings and case studies on a wide range of areas, including: Mechanics of Energy & Energetic Materials Vibration Effects in Fracture & Fatigue Fracture & Fatigue of Additively Manufactured Materials In Situ Techniques for Fatigue & Fracture Microscale & Microstructural Effects on Mechanical Behavior Fracture & Fatigue of Composites Integration & Validation of Models with Experiments Fracture & Fatigue in Extreme Environments Novel Experimental Methods for Fatigue and Fracture Fracture of Brittle & Ductile Materials Interfacial Fracture




Fracture and Fatigue Emanating from Stress Concentrators


Book Description

A vast majority of failures emanate from stress concentrators such as geometrical discontinuities. The role of stress concentration was first highlighted by Inglis (1912) who gives a stress concentration factor for an elliptical defect, and later by Neuber (1936). With the progress in computing, it is now possible to compute the real stress distribution at a notch tip. This distribution is not simple, but looks like pseudo-singularity as in principle the power dependence with distance remains. This distribution is governed by the notch stress intensity factor which is the basis of Notch Fracture Mechanics. Notch Fracture Mechanics is associated with the volumetric method which postulates that fracture requires a physical volume. Since fatigue also needs a physical process volume, Notch Fracture Mechanics can easily be extended to fatigue emanating from a stress concentration.




Fatigue and Fracture


Book Description

"This book emphasizes the physical and practical aspects of fatigue and fracture. It covers mechanical properties of materials, differences between ductile and brittle fractures, fracture mechanics, the basics of fatigue, structural joints, high temperature failures, wear, environmentally-induced failures, and steps in the failure analysis process."--publishers website.




Problems of Fracture Mechanics and Fatigue


Book Description

On Fracture Mechanics A major objective of engineering design is the determination of the geometry and dimensions of machine or structural elements and the selection of material in such a way that the elements perform their operating function in an efficient, safe and economic manner. For this reason the results of stress analysis are coupled with an appropriate failure criterion. Traditional failure criteria based on maximum stress, strain or energy density cannot adequately explain many structural failures that occurred at stress levels considerably lower than the ultimate strength of the material. On the other hand, experiments performed by Griffith in 1921 on glass fibers led to the conclusion that the strength of real materials is much smaller, typically by two orders of magnitude, than the theoretical strength. The discipline of fracture mechanics has been created in an effort to explain these phenomena. It is based on the realistic assumption that all materials contain crack-like defects from which failure initiates. Defects can exist in a material due to its composition, as second-phase particles, debonds in composites, etc. , they can be introduced into a structure during fabrication, as welds, or can be created during the service life of a component like fatigue, environment-assisted or creep cracks. Fracture mechanics studies the loading-bearing capacity of structures in the presence of initial defects. A dominant crack is usually assumed to exist.




Fatigue and Fracture of Weldments


Book Description

This book provides a comprehensive and thorough guide to those readers who are lost in the often-confusing context of weld fatigue. It presents straightforward information on the fracture mechanics and material background of weld fatigue, starting with fatigue crack initiation and short cracks, before moving on to long cracks, crack closure, crack growth and threshold, residual stress, stress concentration, the stress intensity factor, J-integral, multiple cracks, weld geometries and defects, microstructural parameters including HAZ, and cyclic stress-strain behavior. The book treats all of these essential and mutually interacting parameters using a unique form of analysis.




A Unified Statistical Methodology for Modeling Fatigue Damage


Book Description

This book is an attempt to provide a uni?ed methodology to derive models for fatigue life. This includes S-N, ?-N and crack propagation models. This is not a conventional book aimed at describing the fatigue fundamentals, but rather a book in which the basic models of the three main fatigue approaches, the stress-based, the strain-based and the fracture mechanics approaches, are contemplated from a novel and integrated point of view. On the other hand, as an alternative to the preferential attention paid to deterministic models based on the physical, phenomenological and empirical description of fatigue, their probabilistic nature is emphasized in this book, in which stochastic fatigue and crack growth models are presented. This book is the result of a long period of close collaborationbetween its two authors who, although of di?erent backgrounds, mathematical and mechanical, both have a strong sense of engineering with respect to the fatigue problem. When the authors of this book ?rst approached the fatigue ?eld in 1982 (twenty six years ago), they found the following scenario: 1. Linear, bilinear or trilinear models were frequently proposed by relevant laboratoriesandacademiccenterstoreproducetheW ̈ ohler?eld. Thiswas the case of well known institutions, which justi?ed these models based on clientrequirementsorpreferences. Thisledtotheinclusionofsuchmodels and methods as, for example, the up-and-down, in standards and o?cial practical directives (ASTM, Euronorm, etc.), which have proved to be unfortunate.




Mechanics of Fatigue


Book Description

Mechanics of Fatigue addresses the range of topics concerning damage, fatigue, and fracture of engineering materials and structures. The core of this resource builds upon the synthesis of micro- and macro-mechanics of fracture. In micromechanics, both the modeling of mechanical phenomena on the level of material structure and the continuous approach are based on the use of certain internal field parameters characterizing the dispersed micro-damage. This is referred to as continuum damage mechanics. The author develops his own theory for macromechanics, called analytical fracture mechanics. This term means the system cracked body - loading or loading device - is considered as a mechanical system and the tools of analytical (rational) mechanics are applied thoroughly to describe crack propagation until the final failure. Chapter discuss: preliminary information on fatigue and engineering methods for design of machines and structures against failures caused by fatigue fatigue crack nucleation, including microstructural and continuous models theory of fatigue crack propagation fatigue crack growth in linear elastic materials subject to dispersed damage fatigue cracks in elasto-plastic material, including crack growth retardation due to overloading as well as quasistationary approximation fatigue and related phenomena in hereditary solids application of the theory fatigue crack growth considering environmental factors unidirectional fiber composites with ductile matrix and brittle, initially continuous fibers laminate composites Mechanics of Fatigue serves students dealing with mechanical aspects of fatigue, conducting research in fracture mechanics, structural safety, mechanics of composites, as well as modern branches of mechanics of solids and structures.




Fatigue of Materials


Book Description

Written by a leading researcher in the field, this revised and updated second edition of a highly successful book provides an authoritative, comprehensive and unified treatment of the mechanics and micromechanisms of fatigue in metals, non-metals and composites. The author discusses the principles of cyclic deformation, crack initiation and crack growth by fatigue, covering both microscopic and continuum aspects. The book begins with discussions of cyclic deformation and fatigue crack initiation in monocrystalline and polycrystalline ductile alloys as well as in brittle and semi-/non-crystalline solids. Total life and damage-tolerant approaches are then introduced in metals, non-metals and composites followed by more advanced topics. The book includes an extensive bibliography and a problem set for each chapter, together with worked-out example problems and case studies. This will be an important reference for anyone studying fracture and fatigue in materials science and engineering, mechanical, civil, nuclear and aerospace engineering, and biomechanics.




Fatigue Crack Propagation in Metals and Alloys


Book Description

This comprehensive overview of the whole field of fatigue and fracture of metallic materials covers both the theoretical background and some of the latest experimental techniques. It provides a summary of the complex interactions between material microstructure and cracks, classifying them with respect to the overall damage process with a focus on microstructurally short cracks and dynamic embrittlement. It furthermore introduces new concepts for the numerical treatment of fatigue microcrack propagation and their implementation in fatigue-life prediction models.This comprehensive overview of the whole field of fatigue and fracture of metallic materials covers both the theoretical background and the latest experimental techniques. It provides a summary of the complex interactions between material microstructure and cracks, classifying them with respect to the overall damage process. It furthermore introduces new concepts for the numerical treatment of fatigue microcrack propagation and their implementation in fatigue-life prediction models.