Fracture of Nonmetals and Composites


Book Description

Fracture: An Advanced Treatise, Volume VII: Fracture of Nonmetals and Composites examines the fracture of nonmetals and composites. The text of this treatise has been designed so that the reader may acquire pertinent information by self-study. Most chapters have been written in detail and, insofar as possible, have been made to fill a significant gap by also providing, when appropriate, the details of complicated and involved mathematical derivations in appendixes. Whenever possible, only a level of college calculus on the part of the reader has been assumed. Numerical examples showing the engineering applications have been included; also, photographs and drawings have been greatly utilized. The book opens with a review of the fracture behavior of glass. This is followed by separate chapters on the fracture of polymeric glasses; mechanics of the fracture process in rock, with emphasis on the engineering viewpoint; the fracture behavior of simple, single-phase ceramics; and empirical information about, and our level of understanding of, fracture in polycrystalline ceramics. Subsequent chapters deal with the fracture of elastomers; molecular mechanical aspects of the isothermal rupture of elastomers; failure mechanics of fibrous composites; fracture mechanics of composites; fracture and healing of compact bones; and fracture of two-phase alloys; and fracture of lake ice and sea ice.




Eight Non-Classical Problems of Fracture Mechanics


Book Description

This book presents an analysis of eight non-classical problems of fracture and failure mechanics mainly obtained by research in the department of dynamics and stability of continuum of the S. P. Timoshenko Institute of Mechanics of the National Academy of Sciences of Ukraine (NAS of Ukraine). It focusses on the application of the 3D (three-dimensional) theories of stability, dynamics, and statics of solid mechanics to the investigation of non-classical problems of fracture and failure mechanics.




Composites Engineering Handbook


Book Description

Offers information on the fundamental principles, processes, methods and procedures related to fibre-reinforced composites. The book presents a comparative view, and provides design properties of polymeric, metal, ceramic and cement matrix composites. It also gives current test methods, joining techniques and design methodologies.




Nuclear Science Abstracts


Book Description

NSA is a comprehensive collection of international nuclear science and technology literature for the period 1948 through 1976, pre-dating the prestigious INIS database, which began in 1970. NSA existed as a printed product (Volumes 1-33) initially, created by DOE's predecessor, the U.S. Atomic Energy Commission (AEC). NSA includes citations to scientific and technical reports from the AEC, the U.S. Energy Research and Development Administration and its contractors, plus other agencies and international organizations, universities, and industrial and research organizations. References to books, conference proceedings, papers, patents, dissertations, engineering drawings, and journal articles from worldwide sources are also included. Abstracts and full text are provided if available.




Principles of Composite Material Mechanics, Third Edition


Book Description

Principles of Composite Material Mechanics, Third Edition presents a unique blend of classical and contemporary mechanics of composites technologies. While continuing to cover classical methods, this edition also includes frequent references to current state-of-the-art composites technology and research findings. New to the Third Edition Many new worked-out example problems, homework problems, figures, and references An appendix on matrix concepts and operations Coverage of particle composites, nanocomposites, nanoenhancement of conventional fiber composites, and hybrid multiscale composites Expanded coverage of finite element modeling and test methods Easily accessible to students, this popular bestseller incorporates the most worked-out example problems and exercises of any available textbook on mechanics of composite materials. It offers a rich, comprehensive, and up-to-date foundation for students to begin their work in composite materials science and engineering. A solutions manual and PowerPoint presentations are available for qualifying instructors.







Modern Applied Fracture Mechanics


Book Description

Modern Applied Fracture Mechanics presents a practical, accessible guide to understanding and applying basic linear elastic fracture mechanics (LEFM) techniques to problems commonly seen in industry, including fatigue analysis, failure analysis, and damage tolerance. Including applications for several software programs, AFGROW, MATLABĀ®, ABAQUS, and a web-based FM calculator, the book discusses appropriate models, assumptions, and typical input/output parameters. It provides a framework that will enable readers to quickly learn and use fracture mechanics (FM) software packages and/or write their own code to solve unique or standard FM problems. The book covers the fundamental concepts needed to successfully execute routine applications or conduct experimental investigations. End-of-chapter problems are included, along with real-world examples to enhance student understanding. The textbook is appropriate for undergraduate students, preparing them for the industry, and for advanced studies in fracture mechanics at the graduate level. Industry professionals and researchers will find this book a valuable resource for understanding basic fracture mechanics principles and methods. Features include: Provides broad, accessible coverage of common fracture mechanics concepts and applications. Focuses on applications, real-world examples, and numerical methods in fracture analysis. Integrates and explains current end-user software coverage for fracture mechanics. Includes numerous sample problems, software examples, and end-of-chapter problems. Includes a Solutions Manual for adopting instructors.




Fatigue of Materials


Book Description

Written by a leading researcher in the field, this revised and updated second edition of a highly successful book provides an authoritative, comprehensive and unified treatment of the mechanics and micromechanisms of fatigue in metals, non-metals and composites. The author discusses the principles of cyclic deformation, crack initiation and crack growth by fatigue, covering both microscopic and continuum aspects. The book begins with discussions of cyclic deformation and fatigue crack initiation in monocrystalline and polycrystalline ductile alloys as well as in brittle and semi-/non-crystalline solids. Total life and damage-tolerant approaches are then introduced in metals, non-metals and composites followed by more advanced topics. The book includes an extensive bibliography and a problem set for each chapter, together with worked-out example problems and case studies. This will be an important reference for anyone studying fracture and fatigue in materials science and engineering, mechanical, civil, nuclear and aerospace engineering, and biomechanics.




Principles of Composite Material Mechanics


Book Description

Principles of Composite Material Mechanics covers a unique blend of classical and contemporary mechanics of composites technologies. It presents analytical approaches ranging from the elementary mechanics of materials to more advanced elasticity and finite element numerical methods, discusses novel materials such as nanocomposites and hybrid multis




Computational Methods in the Mechanics of Fracture


Book Description

This volume not only covers the fundamental concepts of fracture mechanics, but also the computational methodologies necessary for practical engineering designs aimed at fracture control. It gives a concise summary of various fracture theories: linear elastic, elastic-plastic, and dynamic fracture mechanics of metals and composites. Novel numerical methods (finite element and boundary element) that enable the treatment of complicated engineering problems are emphasized. Examined are problems of linear elastic fracture of metallic and non-metallic composite materials, three-dimensional problems of surface flaws, elastic-plastic fracture, stable crack growth, and dynamic crack propagation. A comprehensive outline of the energetic approach and energy integrals on fracture mechanics is also given. Contents: Preface. Parts: I. Chapters: 1. Fracture: Mechanics or Art? (F. Erdogan). II. 2. Linear Elastic Fracture Mechanics (A.S. Kobayashi). 3. Elastic-Plastic Fracture (Quasi-Static) (S.N. Atluri and A.S. Kobayashi). 4. Dynamic Crack Propagation in Solids (L.B. Freund). 5. Energetic Approaches and Path-Independent Integrals in Fracture Mechanics (S.N. Atluri). III. 6.