Free Random Variables


Book Description

This book presents the first comprehensive introduction to free probability theory, a highly noncommutative probability theory with independence based on free products instead of tensor products. Basic examples of this kind of theory are provided by convolution operators on free groups and by the asymptotic behavior of large Gaussian random matrices. The probabilistic approach to free products has led to a recent surge of new results on the von Neumann algebras of free groups. The book is ideally suited as a textbook for an advanced graduate course and could also provide material for a seminar. In addition to researchers and graduate students in mathematics, this book will be of interest to physicists and others who use random matrices.




Free Probability and Random Matrices


Book Description

This volume opens the world of free probability to a wide variety of readers. From its roots in the theory of operator algebras, free probability has intertwined with non-crossing partitions, random matrices, applications in wireless communications, representation theory of large groups, quantum groups, the invariant subspace problem, large deviations, subfactors, and beyond. This book puts a special emphasis on the relation of free probability to random matrices, but also touches upon the operator algebraic, combinatorial, and analytic aspects of the theory. The book serves as a combination textbook/research monograph, with self-contained chapters, exercises scattered throughout the text, and coverage of important ongoing progress of the theory. It will appeal to graduate students and all mathematicians interested in random matrices and free probability from the point of view of operator algebras, combinatorics, analytic functions, or applications in engineering and statistical physics.




Lectures on the Combinatorics of Free Probability


Book Description

This 2006 book is a self-contained introduction to free probability theory suitable for an introductory graduate level course.




The Semicircle Law, Free Random Variables and Entropy


Book Description

The book treats free probability theory, which has been extensively developed since the early 1980s. The emphasis is put on entropy and the random matrix model approach. The volume is a unique presentation demonstrating the extensive interrelation between the topics. Wigner's theorem and its broad generalizations, such as asymptotic freeness of independent matrices, are explained in detail. Consistent throughout the book is the parallelism between the normal and semicircle laws. Voiculescu's multivariate free entropy theory is presented with full proofs and extends the results to unitary operators. Some applications to operator algebras are also given. Based on lectures given by the authors in Hungary, Japan, and Italy, the book is a good reference for mathematicians interested in free probability theory and can serve as a text for an advanced graduate course. This book brings together both new material and recent surveys on some topics in differential equations that are either directly relevant to, or closely associated with, mathematical physics. Its topics include asymptotic formulas for the ground-state energy of fermionic gas, renormalization ideas in quantum field theory from perturbations of the free Hamiltonian on the circle, $J$-selfadjoint Dirac operators, spectral theory of Schrodinger operators, inverse problems, isoperimetric inequalities in quantum mechanics, Hardy inequalities, and non-adiabatic transitions. Excellent survey articles on Dirichlet-Neumann inverse problems on manifolds (by Uhlmann), numerical investigations associated with Laplacian eigenvalues on planar regions (by Trefethen), Snell's law and propagation of singularities in the wave equation (by Vasy), random operators on tree graphs (by Aizenmann) make this book interesting and valuable for graduate students, young mathematicians, and physicists alike.




Sums of Independent Random Variables


Book Description

The classic "Limit Dislribntions fOT slt1ns of Independent Ramdorn Vari ables" by B.V. Gnedenko and A.N. Kolmogorov was published in 1949. Since then the theory of summation of independent variables has devel oped rapidly. Today a summing-up of the studies in this area, and their results, would require many volumes. The monograph by I.A. Ibragi mov and Yu. V. I~innik, "Independent and Stationarily Connected VaTiables", which appeared in 1965, contains an exposition of the contem porary state of the theory of the summation of independent identically distributed random variables. The present book borders on that of Ibragimov and Linnik, sharing only a few common areas. Its main focus is on sums of independent but not necessarily identically distri buted random variables. It nevertheless includes a number of the most recent results relating to sums of independent and identically distributed variables. Together with limit theorems, it presents many probahilistic inequalities for sums of an arbitrary number of independent variables. The last two chapters deal with the laws of large numbers and the law of the iterated logarithm. These questions were not treated in Ibragimov and Linnik; Gnedenko and KolmogoTOv deals only with theorems on the weak law of large numbers. Thus this book may be taken as complementary to the book by Ibragimov and Linnik. I do not, however, assume that the reader is familiar with the latter, nor with the monograph by Gnedenko and Kolmogorov, which has long since become a bibliographical rarity




Theory of Random Determinants


Book Description

'Et mm. ..., si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point all':'' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf IIClI.t to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.




Free Probability Theory


Book Description

This is a volume of papers from a workshop on Random Matrices and Operator Algebra Free Products, held at The Fields Institute for Research in the Mathematical Sciences in March 1995. Over the last few years, there has been much progress on the operator algebra and noncommutative probability sides of the subject. New links with the physics of masterfields and the combinatorics of noncrossing partitions have emerged. Moreover there is a growing free entropy theory.




Probability, Random Variables, Statistics, and Random Processes


Book Description

Probability, Random Variables, Statistics, and Random Processes: Fundamentals & Applications is a comprehensive undergraduate-level textbook. With its excellent topical coverage, the focus of this book is on the basic principles and practical applications of the fundamental concepts that are extensively used in various Engineering disciplines as well as in a variety of programs in Life and Social Sciences. The text provides students with the requisite building blocks of knowledge they require to understand and progress in their areas of interest. With a simple, clear-cut style of writing, the intuitive explanations, insightful examples, and practical applications are the hallmarks of this book. The text consists of twelve chapters divided into four parts. Part-I, Probability (Chapters 1 – 3), lays a solid groundwork for probability theory, and introduces applications in counting, gambling, reliability, and security. Part-II, Random Variables (Chapters 4 – 7), discusses in detail multiple random variables, along with a multitude of frequently-encountered probability distributions. Part-III, Statistics (Chapters 8 – 10), highlights estimation and hypothesis testing. Part-IV, Random Processes (Chapters 11 – 12), delves into the characterization and processing of random processes. Other notable features include: Most of the text assumes no knowledge of subject matter past first year calculus and linear algebra With its independent chapter structure and rich choice of topics, a variety of syllabi for different courses at the junior, senior, and graduate levels can be supported A supplemental website includes solutions to about 250 practice problems, lecture slides, and figures and tables from the text Given its engaging tone, grounded approach, methodically-paced flow, thorough coverage, and flexible structure, Probability, Random Variables, Statistics, and Random Processes: Fundamentals & Applications clearly serves as a must textbook for courses not only in Electrical Engineering, but also in Computer Engineering, Software Engineering, and Computer Science.




A First Course in Random Matrix Theory


Book Description

An intuitive, up-to-date introduction to random matrix theory and free calculus, with real world illustrations and Big Data applications.




Introduction to Probability


Book Description

This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.