Frege


Book Description

No one has figured more prominently in the study of the German philosopher Gottlob Frege than Michael Dummett. His magisterial Frege: Philosophy of Language is a sustained, systematic analysis of Frege's thought, omitting only the issues in philosophy of mathematics. In this work Dummett discusses, section by section, Frege's masterpiece The Foundations of Arithmetic and Frege's treatment of real numbers in the second volume of Basic Laws of Arithmetic, establishing what parts of the philosopher's views can be salvaged and employed in new theorizing, and what must be abandoned, either as incorrectly argued or as untenable in the light of technical developments. Gottlob Frege (1848-1925) was a logician, mathematician, and philosopher whose work had enormous impact on Bertrand Russell and later on the young Ludwig Wittgenstein, making Frege one of the central influences on twentieth-century Anglo-American philosophy; he is considered the founder of analytic philosophy. His philosophy of mathematics contains deep insights and remains a useful and necessary point of departure for anyone seriously studying or working in the field.




Philosophy of Mathematics


Book Description

A sophisticated, original introduction to the philosophy of mathematics from one of its leading thinkers Mathematics is a model of precision and objectivity, but it appears distinct from the empirical sciences because it seems to deliver nonexperiential knowledge of a nonphysical reality of numbers, sets, and functions. How can these two aspects of mathematics be reconciled? This concise book provides a systematic, accessible introduction to the field that is trying to answer that question: the philosophy of mathematics. Øystein Linnebo, one of the world's leading scholars on the subject, introduces all of the classical approaches to the field as well as more specialized issues, including mathematical intuition, potential infinity, and the search for new mathematical axioms. Sophisticated but clear and approachable, this is an essential book for all students and teachers of philosophy and of mathematics.




The Philosophy of Gottlob Frege


Book Description

This analysis of Frege's views on language and metaphysics in On Sense and Reference, arguably one of the most important philosophical essays of the past hundred years, provides a thorough introduction to the function/argument analysis and applies Frege's technique to the central notions of predication, identity, existence and truth. Of particular interest is the analysis of the Paradox of Identity and a discussion of three solutions: the little-known Begriffsschrift solution, the sense/reference solution, and Russell's 'On Denoting' solution. Russell's views wend their way through the work, serving as a foil to Frege. Appendices give the proofs of the first 68 propositions of Begriffsschrift in modern notation. This book will be of interest to students and professionals in philosophy and linguistics.




Frege's Conception of Logic


Book Description

In Frege's Conception of Logic Patricia A. Blanchette explores the relationship between Gottlob Frege's understanding of conceptual analysis and his understanding of logic. She argues that the fruitfulness of Frege's conception of logic, and the illuminating differences between that conception and those more modern views that have largely supplanted it, are best understood against the backdrop of a clear account of the role of conceptual analysis in logical investigation. The first part of the book locates the role of conceptual analysis in Frege's logicist project. Blanchette argues that despite a number of difficulties, Frege's use of analysis in the service of logicism is a powerful and coherent tool. As a result of coming to grips with his use of that tool, we can see that there is, despite appearances, no conflict between Frege's intention to demonstrate the grounds of ordinary arithmetic and the fact that the numerals of his derived sentences fail to co-refer with ordinary numerals. In the second part of the book, Blanchette explores the resulting conception of logic itself, and some of the straightforward ways in which Frege's conception differs from its now-familiar descendants. In particular, Blanchette argues that consistency, as Frege understands it, differs significantly from the kind of consistency demonstrable via the construction of models. To appreciate this difference is to appreciate the extent to which Frege was right in his debate with Hilbert over consistency- and independence-proofs in geometry. For similar reasons, modern results such as the completeness of formal systems and the categoricity of theories do not have for Frege the same importance they are commonly taken to have by his post-Tarskian descendants. These differences, together with the coherence of Frege's position, provide reason for caution with respect to the appeal to formal systems and their properties in the treatment of fundamental logical properties and relations.







Fixing Frege


Book Description

Gottlob Frege's attempt to found mathematics on a grand logical system came to grief when Bertrand Russell discovered a contradiction in it. This book surveys consistent restrictions in both the old and new versions of Frege's system, determining just how much of mathematics can be reconstructed in each.




Origins of Analytic Philosophy


Book Description




The Foundations of Arithmetic


Book Description

The Foundations of Arithmetic is undoubtedly the best introduction to Frege's thought; it is here that Frege expounds the central notions of his philosophy, subjecting the views of his predecessors and contemporaries to devastating analysis. The book represents the first philosophically sound discussion of the concept of number in Western civilization. It profoundly influenced developments in the philosophy of mathematics and in general ontology.




Necessary Beings


Book Description

Bob Hale presents a broadly Fregean approach to metaphysics, according to which ontology and modality are mutually dependent upon one another. He argues that facts about what kinds of things exist depend on facts about what is possible. Modal facts are fundamental, and have their basis in the essences of things—not in meanings or concepts.




Frege in Perspective


Book Description

Not only can the influence of Gottlob Frege (1848-1925) be found in contemporary work in logic, the philosophy of mathematics, and the philosophy of language, but his projects—and the very terminology he employed in pursuing those projects—are still current in contemporary philosophy. This is undoubtedly why it seems so reasonable to assume that we can read Frege' s writings as if he were one of us, speaking to our philosophical concerns in our language. In Joan Weiner's view, however, Frege's words can be accurately interpreted only if we set that assumption aside. Weiner here offers a challenging new approach to the philosophy of this central figure in analytic philosophy. Weiner finds in Frege's corpus, from Begriffsschrift (1879) on, a unified project of remarkable ambition to which each of the writings in that corpus makes a distinct contribution—a project whose motivation she brings to life through a careful reading of his Foundations of Arithmetic. The Frege that Weiner brings into clear view is very different from the familiar figure. Far from having originated one of the standard positions on the nature of reference, Frege turns out not to have had positive doctrines on anything like what contemporary philosophers mean by "reference." Far from having served as a standard-bearer for those who take the realists' side of contemporary disputes with anti-realists, Frege turns out to have had no stake in either side of the controversy. Through Weiner's lens, Frege emerges as a thinker who has principled reasons for challenging the very assumptions and motivations that animate philosophers to dispute these doctrines. This lucidly written and accessible book will generate controversy among all readers with an interest in epistemology, philosophy of language, history of philosophy, and the philosophy of mathematics.