Rail Vehicle Dynamics


Book Description

This book on the dynamics of rail vehicles is developed from the manuscripts for a class with the same name at TU Berlin. It is directed mainly to master students with pre-knowledge in mathematics and mechanics and engineers that want to learn more. The important phenomena of the running behaviour of rail vehicles are derived and explained. Also recent research results and experience from the operation of rail vehicles are included. One focus is the description of the complex wheel-rail contact phenomena that are essential to understand the concept of running stability and curving. A reader should in the end be able to understand the background of simulation tools that are used by the railway industry and universities today.




Handbook of Railway Vehicle Dynamics


Book Description

Understanding the dynamics of railway vehicles, and indeed of the entire vehicle-track system, is critical to ensuring safe and economical operation of modern railways. As the challenges of higher speed and higher loads with very high levels of safety require ever more innovative engineering solutions, better understanding of the technical issues a




Fundamentals of Rail Vehicle Dynamics


Book Description

Fundamentals of Rail Vehicle Dynamics lays a foundation for the design of rail vehicles based on the mechanics of wheel-rail interaction as described by the equations of motion. The author advances simple models to elucidate particular challenges and demonstrate innovative systems while using analytical studies to examine novel design concepts. Rat




Vehicle–Track Coupled Dynamics


Book Description

This book systematically presents the theory, numerical implementation, field experiments and practical engineering applications of the ‘Vehicle–Track Coupled Dynamics’. Representing a radical departure from classic vehicle system dynamics and track dynamics, the vehicle–track coupled dynamics theory considers the vehicle and track as one interactive and integrated system coupled through wheel–rail interaction. This new theory enables a more comprehensive and accurate solution to the train–track dynamic interaction problem which is a fundamental and important research topic in railway transportation system, especially for the rapidly developed high-speed and heavy-haul railways. It has been widely applied in practical railway engineering. Dr. Wanming Zhai is a Chair Professor of Railway Engineering at Southwest Jiaotong University, where he is also chairman of the Academic Committee and Director of the Train and Track Research Institute. He is a member of the Chinese Academy of Sciences and one of the leading scientists in railway system dynamics. Professor Zhai is Editor-in-Chief of both the International Journal of Rail Transportation, published by Taylor & Francis Group, and the Journal of Modern Transportation, published by Springer. In addition, he is a trustee of the International Association for Vehicle System Dynamics, Vice President of the Chinese Society of Theoretical and Applied Mechanics, and Vice President of the Chinese Society for Vibration Engineering. /div




Freight Car Dynamics


Book Description




Design and Simulation of Rail Vehicles


Book Description

Keep Up with Advancements in the Field of Rail Vehicle Design A thorough understanding of the issues that affect dynamic performance, as well as more inventive methods for controlling rail vehicle dynamics, is needed to meet the demands for safer rail vehicles with higher speed and loads. Design and Simulation of Rail Vehicles examines the field of rail vehicle design, maintenance, and modification, as well as performance issues related to these types of vehicles. This text analyzes rail vehicle design issues and dynamic responses, describes the design and features of rail vehicles, and introduces methods that address the operational conditions of this complex system. Progresses from Basic Concepts and Terminology to Detailed Explanations and Techniques Focused on both non-powered and powered rail vehicles—freight and passenger rolling stock, locomotives, and self-powered vehicles used for public transport—this book introduces the problems involved in designing and modeling all types of rail vehicles. It explores the applications of vehicle dynamics, train operations, and track infrastructure maintenance. It introduces the fundamentals of locomotive design, multibody dynamics, and longitudinal train dynamics, and discusses co-simulation techniques. It also highlights recent advances in rail vehicle design, and contains applicable standards and acceptance tests from around the world. • Includes multidisciplinary simulation approaches • Contains an understanding of rail vehicle design and simulation techniques • Establishes the connection between theory and many simulation examples • Presents simple to advanced rail vehicle design and simulation methodologies Design and Simulation of Rail Vehicles serves as an introductory text for graduate or senior undergraduate students, and as a reference for practicing engineers and researchers investigating performance issues related to these types of vehicles.




Fundamentals of Rail Vehicle Dynamics


Book Description

Fundamentals of Rail Vehicle Dynamics lays a foundation for the design of rail vehicles based on the mechanics of wheel-rail interaction as described by the equations of motion. The author advances simple models to elucidate particular challenges and demonstrate innovative systems while using analytical studies to examine novel design concepts. Rather than focusing on a "typical" set of parameters, the book discusses the issues associated with the complete range of parameters available, concentrating on the configuration and parametric design of the bogie in relation to steering, dynamic response, and stability. This is an excellent reference for designers and researchers involved vehicle development.




Handbook of Railway Vehicle Dynamics, Second Edition


Book Description

Handbook of Railway Vehicle Dynamics, Second Edition, provides expanded, fully updated coverage of railway vehicle dynamics. With chapters by international experts, this work surveys the main areas of rolling stock and locomotive dynamics. Through mathematical analysis and numerous practical examples, it builds a deep understanding of the wheel-rail interface, suspension and suspension component design, simulation and testing of electrical and mechanical systems, and interaction with the surrounding infrastructure, and noise and vibration. Topics added in the Second Edition include magnetic levitation, rail vehicle aerodynamics, and advances in traction and braking for full trains and individual vehicles.




The Dynamics of Vehicles on Roads and Tracks


Book Description

The IAVSD Symposium is the leading international conference in the field of ground vehicle dynamics, bringing together scientists and engineers from academia and industry. The biennial IAVSD symposia have been held in internationally renowned locations. In 2015 the 24th Symposium of the International Association for Vehicle System Dynamics (IAVSD)




Vehicle Dynamics


Book Description

Growing worldwide populations increasingly require faster, safer, and more efficient transportation systems. These needs have led to a renewed interest in high-speed guided ground transportation technology, inspired considerable research, and instigated the development of better analytical and experimental tools. A very significant body of knowledge currently exists, but has primarily remained scattered throughout the literature. Vehicle Dynamics consolidates information from a wide spectrum of sources in the area of guided ground transportation. Each chapter provides a concise, thorough statement of the fundamental theory, followed by illustrative worked examples and exercises. The author also includes a variety of unsolved problems designed to amplify and extend the theory and provide problem-solving experience. The subject of guided ground transportation is vast, but this book brings together the core topics, providing in-depth treatments of topics ranging from system classification, analysis, and response to lading dynamics and rail, air cushion, and maglev systems. In doing so, Vehicle Dynamics offers a singular opportunity for readers to build the solid background needed for solving practical vehicle dynamics problems or pursuing more advanced or specialized studies.