Physics for Animators


Book Description

Achieving believable motion in animation requires an understanding of physics that most of us missed out on in art school. Although animators often break the laws of physics for comedic or dramatic effect, you need to know which laws you’re breaking in order to make it work. And while large studios might be able to spend a lot of time and money testing different approaches or hiring a physics consultant, smaller studios and independent animators have no such luxury. This book takes the mystery out of physics tasks like character motion, light and shadow placement, explosions, ocean movement, and outer space scenes, making it easy to apply realistic physics to your work. Physics concepts are explained in animator’s terms, relating concepts specifically to animation movement and appearance. Complex mathematical concepts are broken down into clear steps you can follow to solve animation problems quickly and effectively. Bonus companion website at www.physicsforanimators.com offers additional resources, including examples in movies and games, links to resources, and tips on using physics in your work. Uniting theory and practice, author Michele Bousquet teaches animators how to swiftly and efficiently create scientifically accurate scenes and fix problem spots, and how and when to break the laws of physics. Ideal for everything from classical 2D animation to advanced CG special effects, this book provides animators with solutions that are simple, quick, and powerful.




College Physics for AP® Courses


Book Description

"This introductory, algebra-based, two-semester college physics book is grounded with real-world examples, illustrations, and explanations to help students grasp key, fundamental physics concepts. ... This online, fully editable and customizable title includes learning objectives, concept questions, links to labs and simulations, and ample practice opportunities to solve traditional physics application problems."--Website of book.




Matter


Book Description

Matter: Physical Science for Kids from the Picture Book Science series gets kids excited about science! What’s the matter? Everything is matter! Everything you can touch and hold is made up of matter—including you, your dog, and this book! Matter is stuff that you can weigh and that takes up space, which means pretty much everything in the world is made of matter. In Matter: Physical Science for Kids, kids ages 5 to 8 explore the definition of matter and the different states of matter, plus the stuff in our world that isn’t matter, such as sound and light! In this nonfiction picture book, children are introduced to physical science through detailed illustrations paired with a compelling narrative that uses fun language to convey familiar examples of real-world science connections. By recognizing the basic physics concept of matter and identifying the different ways matter appears in real life, kids develop a fundamental understanding of physical science and are impressed with the idea that science is a constant part of our lives and not limited to classrooms and laboratories. Simple vocabulary, detailed illustrations, easy science experiments, and a glossary all support exciting learning for kids ages 5 to 8. Perfect for beginner readers or as a read aloud nonfiction picture book! Part of a set of four books in a series called Picture Book Science that tackles different kinds of physical science (waves, forces, energy, and matter), Matter offers beautiful pictures and simple observations and explanations. Quick STEM activities such as weighing two balloons to test if air is matter help readers cross the bridge from conceptual to experiential learning and provide a foundation of knowledge that will prove invaluable as kids progress in their science education. Perfect for children who love to ask, “Why?” about the world around them, Matter satisfies curiosity while encouraging continual student-led learning.




APlusPhysics


Book Description

APlusPhysics: Your Guide to Regents Physics Essentials is a clear and concise roadmap to the entire New York State Regents Physics curriculum, preparing students for success in their high school physics class as well as review for high marks on the Regents Physics Exam. Topics covered include pre-requisite math and trigonometry; kinematics; forces; Newton's Laws of Motion, circular motion and gravity; impulse and momentum; work, energy, and power; electrostatics; electric circuits; magnetism; waves; optics; and modern physics. Featuring more than five hundred questions from past Regents exams with worked out solutions and detailed illustrations, this book is integrated with the APlusPhysics.com website, which includes online question and answer forums, videos, animations, and supplemental problems to help you master Regents Physics essentials. "The best physics books are the ones kids will actually read." Advance Praise for APlusPhysics Regents Physics Essentials: "Very well written... simple, clear engaging and accessible. You hit a grand slam with this review book." -- Anthony, NY Regents Physics Teacher. "Does a great job giving students what they need to know. The value provided is amazing." -- Tom, NY Regents Physics Teacher. "This was tremendous preparation for my physics test. I love the detailed problem solutions." -- Jenny, NY Regents Physics Student. "Regents Physics Essentials has all the information you could ever need and is much easier to understand than many other textbooks... it is an excellent review tool and is truly written for students." -- Cat, NY Regents Physics Student




Body Physics


Book Description

"Body Physics was designed to meet the objectives of a one-term high school or freshman level course in physical science, typically designed to provide non-science majors and undeclared students with exposure to the most basic principles in physics while fulfilling a science-with-lab core requirement. The content level is aimed at students taking their first college science course, whether or not they are planning to major in science. However, with minor supplementation by other resources, such as OpenStax College Physics, this textbook could easily be used as the primary resource in 200-level introductory courses. Chapters that may be more appropriate for physics courses than for general science courses are noted with an asterisk symbol (*). Of course this textbook could be used to supplement other primary resources in any physics course covering mechanics and thermodynamics"--Textbook Web page.




The Nature of Code


Book Description

All aboard The Coding Train! This beginner-friendly creative coding tutorial is designed to grow your skills in a fun, hands-on way as you build simulations of real-world phenomena with “The Coding Train” YouTube star Daniel Shiffman. What if you could re-create the awe-inspiring flocking patterns of birds or the hypnotic dance of fireflies—with code? For over a decade, The Nature of Code has empowered countless readers to do just that, bridging the gap between creative expression and programming. This innovative guide by Daniel Shiffman, creator of the beloved Coding Train, welcomes budding and seasoned programmers alike into a world where code meets playful creativity. This JavaScript-based edition of Shiffman’s groundbreaking work gently unfolds the mysteries of the natural world, turning complex topics like genetic algorithms, physics-based simulations, and neural networks into accessible and visually stunning creations. Embark on this extraordinary adventure with projects involving: A physics engine: Simulate the push and pull of gravitational attraction. Flocking birds: Choreograph the mesmerizing dance of a flock. Branching trees: Grow lifelike and organic tree structures. Neural networks: Craft intelligent systems that learn and adapt. Cellular automata: Uncover the magic of self-organizing patterns. Evolutionary algorithms: Play witness to natural selection in your code. Shiffman’s work has transformed thousands of curious minds into creators, breaking down barriers between science, art, and technology, and inviting readers to see code not just as a tool for tasks but as a canvas for boundless creativity. Whether you’re deciphering the elegant patterns of natural phenomena or crafting your own digital ecosystems, Shiffman’s guidance is sure to inform and inspire. The Nature of Code is not just about coding; it’s about looking at the natural world in a new way and letting its wonders inspire your next creation. Dive in and discover the joy of turning code into art—all while mastering coding fundamentals along the way. NOTE: All examples are written with p5.js, a JavaScript library for creative coding, and are available on the book's website.




A Student's Guide to Lagrangians and Hamiltonians


Book Description

A concise treatment of variational techniques, focussing on Lagrangian and Hamiltonian systems, ideal for physics, engineering and mathematics students.




Nonlocal Gravity


Book Description

Relativity theory assumes locality, without accounting for the observer's past history. This work introduces nonlocality, or history dependence, into relativity theory. Inertia and gravitation are deeply tied, suggesting gravity may be nonlocal. The gravitational memory of past events must then be taken into account




What Goes Up... Gravity and Scientific Method


Book Description

The concept of gravity provides a natural phenomenon that is simultaneously obvious and obscure; we all know what it is, but rarely question why it is. The simple observation that 'what goes up must come down' contrasts starkly with our current scientific explanation of gravity, which involves challenging and sometimes counterintuitive concepts. With such extremes between the plain and the perplexing, gravity forces a sharp focus on scientific method. Following the history of gravity from Aristotle to Einstein, this clear account highlights the logic of scientific method for non-specialists. Successive theories of gravity and the evidence for each are presented clearly and rationally, focusing on the fundamental ideas behind them. Using only high-school level algebra and geometry, the author emphasizes what the equations mean rather than how they are derived, making this accessible for all those curious about gravity and how science really works.




Motion


Book Description

Learn how things get moving and what makes them stop.