Organic Solar Cells


Book Description

Current energy consumption mainly depends on fossil fuels that are limited and can cause environmental issues such as greenhouse gas emissions and global warming. These factors have stimulated the search for alternate, clean, and renewable energy sources. Solar cells are some of the most promising clean and readily available energy sources. Plus, the successful utilization of solar energy can help reduce the dependence on fossil fuels. Recently, organic solar cells have gained extensive attention as a next-generation photovoltaic technology due to their light weight, mechanical flexibility, and solution-based cost-effective processing. Organic Solar Cells: Materials, Devices, Interfaces, and Modeling provides an in-depth understanding of the current state of the art of organic solar cell technology. Encompassing the full spectrum of organic solar cell materials, modeling and simulation, and device physics and engineering, this comprehensive text: Discusses active layer, interfacial, and transparent electrode materials Explains how to relate synthesis parameters to morphology of the photoactive layer using molecular dynamics simulations Offers insight into coupling morphology and interfaces with charge transport in organic solar cells Explores photoexcited carrier dynamics, defect states, interface engineering, and nanophase separation Covers inorganic–organic hybrids, tandem structure, and graphene-based polymer solar cells Organic Solar Cells: Materials, Devices, Interfaces, and Modeling makes an ideal reference for scientists and engineers as well as researchers and students entering the field from broad disciplines including chemistry, material science and engineering, physics, nanotechnology, nanoscience, and electrical engineering.




Polymer Films in Sensor Applications


Book Description

Polymer films now play an essential and growing role in sensors. Recent advances in polymer science and film preparation have made polymer films useful, practical and economical in a wide range of sensor designs and applications. Further, the continuing miniaturization of microelectronics favors the use of polymer thin films in sensors. This new book is the first comprehensive presentation of this technology. It covers both scientific fundamentals and practical engineering aspects. Included is an extensive survey of all types of sensors and applications. The very detailed table of contents in the next pages provides full information on content. More than 200 schematics illustrate a wide variety of sensor structures and their function.




Flexible and Wearable Sensors


Book Description

With rapid technological developments and lifestyle advancements, electronic sensors are being seamlessly integrated into many devices. This comprehensive handbook explores current, state-of-the-art developments in flexible and wearable sensor technology and its future challenges. Numerous recent efforts have improved the sensing capability and functionality of flexible and wearable sensors. However, there are still many challenges in making them super-smart by incorporating features such as self-power, self-healing, and multifunctionality. These features can be developed with the use of multifunctional nanostructured materials, unique architectural designs, and other advanced technologies. This book provides details about the recent advancements, materials, and technologies used for flexible and wearable sensors. Its wide range of topics addresses the fundamentals of flexible and wearable sensors, their working principles, and their advanced applications. This handbook provides new directions to scientists, researchers, and students to better understand the principles, technologies, and applications of sensors in healthcare, energy, and the environment.




Materials for Solar Cell Technologies I


Book Description

The book reviews recent research and new trends in the area of solar cell materials. Topics include fabrication methods, solar cell design, energy efficiency and commercialization of next-generation materials. Special focus is placed on graphene and carbon nanomaterials, graphene in dye-sensitized solar cells, perovskite solar cells and organic photovoltaic cells, as well as on transparent conducting electrode (TCE) materials, hollow nanostructured photoelectrodes, monocrystalline silicon solar cells (MSSC) and BHJ organic solar cells. Also discussed is the use of graphene, sulfides, and metal nanoparticle-based absorber materials. Keywords: Solar Cell, Graphene Nanomaterials, Carbon Nanomaterials, Graphene in Dye-sensitized Solar Cells, Perovskite Solar Cells, Organic Photovoltaic Cells, Transparent Conducting Electrode (TCE) Materials, Hollow Nanostructured Photoelectrodes, Monocrystalline Silicon Solar Cells (MSSC), BHJ Organic Solar Cells, Electrochemical Sensing, Low Band-Gap Materials, Absorber Materials for Solar Cells.




Comprehensive Guide on Organic and Inorganic Solar Cells


Book Description

Comprehensive Guide on Organic and Inorganic Solar Cells: Fundamental Concepts to Fabrication Methods is a one-stop, authoritative resource on all types of inorganic, organic and hybrid solar cells, including their theoretical background and the practical knowledge required for fabrication. With chapters rigorously dedicated to a particular type of solar cell, each subchapter takes a detailed look at synthesis recipes, deposition techniques, materials properties and their influence on solar cell performance, including advanced characterization methods with materials selection and experimental techniques. By addressing the evolution of solar cell technologies, second generation thin-film photovoltaics, organic solar cells, and finally, the latest hybrid organic-inorganic approaches, this book benefits students and researchers in solar cell technology to understand the similarities, differences, benefits and challenges of each device. Introduces the basic concepts of different photovoltaic cells to audiences from a wide variety of academic backgrounds Consists of working principles of a particular category of solar technology followed by dissection of every component within the architecture Crucial experimental procedures for the fabrication of solar cell devices are introduced, aiding picture practical application of the technology




Organic Solar Cells


Book Description

This book contains detailed information on the types, structure, fabrication, and characterization of organic solar cells (OSCs). It discusses processes to improve efficiencies and the prevention of degradation in OSCs. It compares the cost-effectiveness of OSCs to those based on crystalline silicon and discusses ways to make OSCs more economical. This book provides a practical guide for the fabrication, processing, and characterization of OSCs and paves the way for further development in OSC technology.




Sensors for Stretchable Electronics in Nanotechnology


Book Description

Sensors for Stretchable Electronics in Nanotechnology discusses the fabrication of semiconducting materials, simple and cost-effective synthesis, and unique mechanisms that enable the fabrication of fully elastic electronic devices that can tolerate high strain. It reviews specific applications that directly benefit from highly compliant electronics, including transistors, photonic devices, and sensors. Discusses ultra-flexible electronics, highlighting its upcoming significance for the industrial-scale production of electronic goods Outlines the role of nanomaterials in fabricating flexible and multifunctional sensors and their applications in sensor technologies Covers graphene-based flexible and stretchable strain sensors Details various applications including wearable electronics, chemical sensors for detecting humidity, environmental hazards, pathogens, and biological warfare agents, and biosensors for detecting vital signals This book is a valuable resource for students, scientists, and professionals working in the research areas of sensor technologies, nanotechnology, materials science, chemistry, physics, biological and medical sciences, the healthcare industry, environmental science, and technology.




Nature-Inspired Sensors


Book Description

Nature-Inspired Sensors presents and discusses the basic principles and latest developments in nature-inspired sensing and biosensing materials, along with the design and mechanisms for analyzing their potential in multifunctional sensing applications. Sections provide a comprehensive review of certain fundamental mechanisms in different living creatures including humans, animals, and plants. In addition, the book presents and discusses ways for imitating various nature-inspired structural features and their functional properties such as hierarchical, interlocked, porous, bristle-like structures, and hetero-layered brick-and-mortar structures. Sections also highlight the utility of these structures and their properties for sensing functions, which include static coloration, self-cleaning, adhesive, underwater navigation and object detection, electric charge generation, and sensitive olfactory functions for detecting various substances. This is followed by an appraisal of accumulating knowledge and its translation from the laboratory to the point-of-care phase, using selective sensors as well as desktop and wearable artificial sensing devices, e.g., electronic noses and electronic skins, in conjunction with AI-assisted data processing and decision-making in the targeted field of application. - Discusses current strategies for fabricating nature-derived bio/chemical sensors - Presents ways to apply nature-derived bio/chemical sensors in real life - Discusses the future of nature derived bio/chemical sensors




Organic Sensors


Book Description

Organic Sensors: Materials and Applications features contributions from an international panel of leading researchers in organic electronics and their applications as sensors. It reviews the state-of-the-art in the use of organic electronic materials such as organic semiconductors, conducting polymers, chemically functionalized materials, and composite materials as physical, chemical and biomedical sensors in a variety of application settings. Topics covered include organic semiconductors for chemical and physical sensing; conducting polymers in sensor applications; chemically functionalized organic semiconductors for highly selective sensing; composite organic-inorganic sensors; artificial skin applications; organic thin film transistor strain gauges for biomedical applications; OTFT infrared sensors for touchless human-machine interaction; smart fabric sensors and e-textile technologies; image capture with organic sensors; organic gas sensors and electronic noses; electrolyte gated organic transistors for biochemical sensing; ion-selective organic electrochemical transistors; DNA biosensors; metabolic organic sensors; and conductive polymer-based sensors for biomedical applications. This book is cross-disciplinary in its approach and combines electronic engineering, materials science, chemistry, physics and healthcare technology. It will be an invaluable resource for researchers working in sensors and organic electronics.




Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors


Book Description

Three-volumes book “Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors” is the first to cover both chemical sensors and biosensors and all types of photodetectors and radiation detectors based on II-VI semiconductors. It contains a comprehensive and detailed analysis of all aspects of the application of II-VI semiconductors in these devices. The second volume “Photodetectors” of a three-volume set, focus on the consideration of all types of optical detectors, including IR detectors, visible and UV photodetectors. This consideration includes both the fundamentals of the operation of detectors and the peculiarities of their manufacture and use. In particular, describes numerous strategies for their fabrication and characterization. An analysis of new trends in development of II-VI semiconductors-based photodetectors such as graphene/HgCdTe-, nanowire- and quantum dot-based photodetectors, as well as solution-processed, multicolor, flexible and self-powered photodetectors, are also given.