From Quasars to Gamma-Ray Bursts


Book Description

Astrophysics has always been a captivating field, delving into the mysteries of the universe and providing glimpses into the workings of celestial objects. However, it is in the realm of high-energy astrophysics that the universe truly reveals its most extreme phenomena. From quasars to gamma-ray bursts, this subchapter explores the historical milestones that have unraveled the mysteries of high-energy astrophysics. In the early 20th century, the study of astrophysics was primarily focused on the visible light emitted by stars and galaxies. It wasn't until 1932 that the first cosmic rays, highly energetic particles from space, were discovered by physicist Victor Hess. This groundbreaking observation hinted at the existence of high-energy phenomena beyond the reach of traditional telescopes. The discovery of the first X-ray source outside our solar system in 1962 marked a turning point in high-energy astrophysics. Astronomers soon realized that X-rays and gamma-rays, with their much higher energies than visible light, could provide vital information about the most energetic processes in the universe. Exploratory missions, such as the Uhuru satellite launched in 1970, opened a new window for studying high-energy astrophysics. The birth of X-ray astronomy gave rise to incredible findings. In 1967, the first X-ray pulsar, a rapidly rotating neutron star, was discovered. This revelation paved the way for understanding the behavior of matter under extreme gravitational forces. Subsequently, in 1974, the discovery of the first X-ray binary system, where a compact object accretes matter from a companion star, provided further insights into the dynamics of high-energy processes. The 1990s marked a new era with the launch of the Compton Gamma Ray Observatory. This satellite enabled astronomers to observe gamma-ray bursts, the most energetic events in the universe, for the first time. These fleeting bursts of gamma-rays, lasting only a few seconds, puzzled scientists and sparked a race to understand their origins. It wasn't until 1997 that the first optical afterglow of a gamma-ray burst was detected, leading to the realization that these cataclysmic events were associated with the explosive deaths of massive stars. With the advent of space-based observatories like the Chandra X-ray Observatory and the Fermi Gamma-ray Space Telescope, high-energy astrophysics has continued to push the boundaries of our knowledge. These observatories have revealed the existence of supermassive black holes at the centers of galaxies, shedding light on their role in the evolution of cosmic structures.




Cosmic Gamma-Ray Sources


Book Description

Gamma-ray astronomy has undergone an enormous progress in the last 15 years. The success of satellite experiments like NASA's Comp ton Gamma-Ray Observatory and ESA's INTEGRAL mission, as well as of ground-based instruments have open new views into the high-energy Universe. Different classes of cosmic gamma-ray sources have been now detected at different energies, in addition to young radio pulsars and gamma-ray bursts, the classical ones. The new sources include radio quiet pulsars, microquasars, supernova remnants, starburst galaxies, ra dio galaxies, flat-spectrum radio quasars, and BL Lacertae objects. A large number of unidentified sources strongly suggests that this brief enumeration is far from complete. Gamma-ray bursts are now estab lished as extragalactic sources with tremendous energy output. There is accumulating evidence supporting the idea that massive stars and star forming regions can accelerate charged particles up to relativistic ener gies making them gamma-ray sources. Gamma-ray astronomy has also proved to be a powerful tool for cosmology imposing constraints to the background photon fields that can absorb the gamma-ray flux from dis tant sources. All this has profound implications for our current ideas about how particles are accelerated and transported in both the local and distant U niverse. The evolution of our knowledge on the gamma-ray sky has been so fast that is not easy for the non-specialist scientist and the graduate student to be aware of the full potential of this field or to grasp the fundamentals of a given topic in order to attempt some original contribution.




Gamma Ray Bursts


Book Description

The best astrophysical accelerators are quasars and the 'progenitors' of GRBs which, after decades of observations and scores of theories, we still do not understand. But, I shall argue, we now know quite well where GRBs come from, and we understand how their 'beams' behave, as they make short pulses of gamma rays and long-duration X-ray, optical and radio 'afterglows'. I shall argue that our understanding of these phenomena, based on the 'Cannonball Model', is unusually simple, precise and successful. The 'sociology' of GRBs is interesting per se and, in this sense, the avatars of the Cannonball Model in confronting the generally accepted 'fireball models' are also quite revealing.




Comets


Book Description

Radiating fire and ice, comets as a phenomenon seem part science, part myth. Two thousand years ago when a comet shot across the night sky, it convinced the Romans that Julius Caesar was a god. In 1066, Halley’s Comet was interpreted as a foreshadowing of the death of Harold the Second in the Battle of Hastings. Even today the arrival of a comet often feels auspicious, confirming our hopes, fears, and sense of wonder in the universe. In Comets, P. Andrew Karam takes the reader on a far-ranging exploration of these most beautiful and dramatic objects in the skies, revealing how comets and humanity have been interwoven throughout history. He delves into the science of comets and how it has changed over time; the way comets have been depicted in art, religion, literature, and popular culture; and how comets have appeared in the heavens through the centuries. Comprehensive in scope and beautifully illustrated throughout, the book will appeal not only to the budding astronomer, but to anyone with an appreciation for these compelling and remarkable celestial bodies.




What Are Gamma-Ray Bursts?


Book Description

A brief, cutting-edge introduction to the brightest cosmic phenomena known to science Gamma-ray bursts are the brightest—and, until recently, among the least understood—cosmic events in the universe. Discovered by chance during the cold war, these evanescent high-energy explosions confounded astronomers for decades. But a rapid series of startling breakthroughs beginning in 1997 revealed that the majority of gamma-ray bursts are caused by the explosions of young and massive stars in the vast star-forming cauldrons of distant galaxies. New findings also point to very different origins for some events, serving to complicate but enrich our understanding of the exotic and violent universe. What Are Gamma-Ray Bursts? is a succinct introduction to this fast-growing subject, written by an astrophysicist who is at the forefront of today's research into these incredible cosmic phenomena. Joshua Bloom gives readers a concise and accessible overview of gamma-ray bursts and the theoretical framework that physicists have developed to make sense of complex observations across the electromagnetic spectrum. He traces the history of remarkable discoveries that led to our current understanding of gamma-ray bursts, and reveals the decisive role these phenomena could play in the grand pursuits of twenty-first century astrophysics, from studying gravity waves and unveiling the growth of stars and galaxies after the big bang to surmising the ultimate fate of the universe itself. What Are Gamma-Ray Bursts? is an essential primer to this exciting frontier of scientific inquiry, and a must-read for anyone seeking to keep pace with cutting-edge developments in physics today.







The Gamma-Ray Observatory


Book Description







Deciphering the Ancient Universe with Gamma-Ray Bursts


Book Description

Gamma-ray bursts (GRBs) are the most luminous and violent explosions detectable out to the edge of the observable Universe. As soon as their cosmological origin was established, it became apparent that GRBs can serve as powerful probes of the high-redshift Universe. The association of long GRBs with the deaths of massive stars imply that they trace the sites and history of massive star formation. Their optical and near-infrared afterglows reveal spectral imprints of their environments, including the interstellar medium of their host galaxies as well as the intergalactic medium during cosmic reionization. With the Swift Observatory in orbit, such expectations are now being materialized. With GRB 050904, we found that the Universe was already largely ionized at z=6.3. The discovery of GRB 090423 at z~8.2, the most distant astrophysical object known to date, clearly demonstrates that in the coming years, GRBs will offer us an unprecedented view into the mysterious era of cosmic reionization and the formation of the first stars and galaxies. And yet, our knowledge concerning the GRBs themselves remain appallingly meager, such as their progenitors, their true energetics, the mechanisms of jet formation, particle acceleration and prompt emission, etc. The aim of this conference is to discuss the latest observational and theoretical developments in this exciting field of GRBs, with a strong emphasis on their use as probes of the high redshift universe. Non-GRB studies of the high redshift Universe, involving e.g. supernovae, galaxies, quasars and background radiation, are also essential elements of this conference.




The Biggest Bangs


Book Description

Gamma-ray bursts are the most violent events since the birth of the universe. They are about ten times more energetic than the most powerful supernovae. At their peak, gamma-ray bursts are the brightest objects in space, about 100,000 times brighter than an entire galaxy. And yet until recently these titanic eruptions were the most mysterious events in astronomy. In The Biggest Bangs, astrophysicist Jonathan Katz offers a fascinating account of the scientific quest to unravel the mystery of these incredible phenomena. With an eye for colorful detail and a talent for translating scientific jargon into plain English, Katz ranges from the accidental discovery of gamma-ray bursts (by a Cold War satellite system monitoring the Nuclear Test Ban Treaty) to the frustrating but ultimately successful efforts to localize these bursts in distant galaxies. He describes the theories, the equipment (the most recent breakthrough was made with a telescope you could carry under your arm), and the pioneers who have finally begun to explain these strange bursts. And along the way, he offers important lessons about science itself, arguing that "small science" is as valuable as institutionalized "big science," that observations are more the product of advances in technology than of theory, and that theory is only "the concentrated essence of experiment." With the advent of the space age a mere 40 years ago, we have grown used to strangeness in the universe--and confident in science's ability to explain it. In The Biggest Bangs, Jonathan Katz shows that there are still wonders out there that exceed the bounds of our imagination and defy our ability to understand them.