Standards for Educational and Psychological Testing


Book Description

"Prepared by the Joint Committee on Standards for Educatioanl and Psychological Testing of the American Educational Research Association, American Psychological Association and National Council on Measurement in Education"--T.p. verso.




Science Curriculum Topic Study


Book Description

Today’s science standards reflect a new vision of teaching and learning. | How to make this vision happen Scientific literacy for all students requires a deep understanding of the three dimensions of science education: disciplinary content, scientific and engineering practices, and crosscutting concepts. If you actively engage students in using and applying these three dimensions within curricular topics, they will develop a scientifically-based and coherent view of the natural and designed world. The latest edition of this best-seller, newly mapped to the Framework for K-12 Science Education and the Next Generation Science Standards (NGSS), and updated with new standards and research-based resources, will help science educators make the shifts needed to reflect current practices in curriculum, instruction, and assessment. The methodical study process described in this book will help readers intertwine content, practices, and crosscutting concepts. The book includes: • An increased emphasis on STEM, including topics in science, technology, and engineering • 103 separate curriculum topic study guides, arranged in six categories • Connections to content knowledge, curricular and instructional implications, concepts and specific ideas, research on student learning, K-12 articulation, and assessment Teachers and those who support teachers will appreciate how Curriculum Topic Study helps them reliably analyze and interpret their standards and translate them into classroom practice, thus ensuring that students achieve a deeper understanding of the natural and designed world.




Sharing Clinical Research Data


Book Description

Pharmaceutical companies, academic researchers, and government agencies such as the Food and Drug Administration and the National Institutes of Health all possess large quantities of clinical research data. If these data were shared more widely within and across sectors, the resulting research advances derived from data pooling and analysis could improve public health, enhance patient safety, and spur drug development. Data sharing can also increase public trust in clinical trials and conclusions derived from them by lending transparency to the clinical research process. Much of this information, however, is never shared. Retention of clinical research data by investigators and within organizations may represent lost opportunities in biomedical research. Despite the potential benefits that could be accrued from pooling and analysis of shared data, barriers to data sharing faced by researchers in industry include concerns about data mining, erroneous secondary analyses of data, and unwarranted litigation, as well as a desire to protect confidential commercial information. Academic partners face significant cultural barriers to sharing data and participating in longer term collaborative efforts that stem from a desire to protect intellectual autonomy and a career advancement system built on priority of publication and citation requirements. Some barriers, like the need to protect patient privacy, pre- sent challenges for both sectors. Looking ahead, there are also a number of technical challenges to be faced in analyzing potentially large and heterogeneous datasets. This public workshop focused on strategies to facilitate sharing of clinical research data in order to advance scientific knowledge and public health. While the workshop focused on sharing of data from preplanned interventional studies of human subjects, models and projects involving sharing of other clinical data types were considered to the extent that they provided lessons learned and best practices. The workshop objectives were to examine the benefits of sharing of clinical research data from all sectors and among these sectors, including, for example: benefits to the research and development enterprise and benefits to the analysis of safety and efficacy. Sharing Clinical Research Data: Workshop Summary identifies barriers and challenges to sharing clinical research data, explores strategies to address these barriers and challenges, including identifying priority actions and "low-hanging fruit" opportunities, and discusses strategies for using these potentially large datasets to facilitate scientific and public health advances.




Reporting Research in Psychology


Book Description

"An educational guide based on the Publication manual of the American Psychological Association"--Cover.




Inquiry and the National Science Education Standards


Book Description

Humans, especially children, are naturally curious. Yet, people often balk at the thought of learning scienceâ€"the "eyes glazed over" syndrome. Teachers may find teaching science a major challenge in an era when science ranges from the hardly imaginable quark to the distant, blazing quasar. Inquiry and the National Science Education Standards is the book that educators have been waiting forâ€"a practical guide to teaching inquiry and teaching through inquiry, as recommended by the National Science Education Standards. This will be an important resource for educators who must help school boards, parents, and teachers understand "why we can't teach the way we used to." "Inquiry" refers to the diverse ways in which scientists study the natural world and in which students grasp science knowledge and the methods by which that knowledge is produced. This book explains and illustrates how inquiry helps students learn science content, master how to do science, and understand the nature of science. This book explores the dimensions of teaching and learning science as inquiry for K-12 students across a range of science topics. Detailed examples help clarify when teachers should use the inquiry-based approach and how much structure, guidance, and coaching they should provide. The book dispels myths that may have discouraged educators from the inquiry-based approach and illuminates the subtle interplay between concepts, processes, and science as it is experienced in the classroom. Inquiry and the National Science Education Standards shows how to bring the standards to life, with features such as classroom vignettes exploring different kinds of inquiries for elementary, middle, and high school and Frequently Asked Questions for teachers, responding to common concerns such as obtaining teaching supplies. Turning to assessment, the committee discusses why assessment is important, looks at existing schemes and formats, and addresses how to involve students in assessing their own learning achievements. In addition, this book discusses administrative assistance, communication with parents, appropriate teacher evaluation, and other avenues to promoting and supporting this new teaching paradigm.




Guide to Implementing the Next Generation Science Standards


Book Description

A Framework for K-12 Science Education and Next Generation Science Standards (NGSS) describe a new vision for science learning and teaching that is catalyzing improvements in science classrooms across the United States. Achieving this new vision will require time, resources, and ongoing commitment from state, district, and school leaders, as well as classroom teachers. Successful implementation of the NGSS will ensure that all K-12 students have high-quality opportunities to learn science. Guide to Implementing the Next Generation Science Standards provides guidance to district and school leaders and teachers charged with developing a plan and implementing the NGSS as they change their curriculum, instruction, professional learning, policies, and assessment to align with the new standards. For each of these elements, this report lays out recommendations for action around key issues and cautions about potential pitfalls. Coordinating changes in these aspects of the education system is challenging. As a foundation for that process, Guide to Implementing the Next Generation Science Standards identifies some overarching principles that should guide the planning and implementation process. The new standards present a vision of science and engineering learning designed to bring these subjects alive for all students, emphasizing the satisfaction of pursuing compelling questions and the joy of discovery and invention. Achieving this vision in all science classrooms will be a major undertaking and will require changes to many aspects of science education. Guide to Implementing the Next Generation Science Standards will be a valuable resource for states, districts, and schools charged with planning and implementing changes, to help them achieve the goal of teaching science for the 21st century.




Finding What Works in Health Care


Book Description

Healthcare decision makers in search of reliable information that compares health interventions increasingly turn to systematic reviews for the best summary of the evidence. Systematic reviews identify, select, assess, and synthesize the findings of similar but separate studies, and can help clarify what is known and not known about the potential benefits and harms of drugs, devices, and other healthcare services. Systematic reviews can be helpful for clinicians who want to integrate research findings into their daily practices, for patients to make well-informed choices about their own care, for professional medical societies and other organizations that develop clinical practice guidelines. Too often systematic reviews are of uncertain or poor quality. There are no universally accepted standards for developing systematic reviews leading to variability in how conflicts of interest and biases are handled, how evidence is appraised, and the overall scientific rigor of the process. In Finding What Works in Health Care the Institute of Medicine (IOM) recommends 21 standards for developing high-quality systematic reviews of comparative effectiveness research. The standards address the entire systematic review process from the initial steps of formulating the topic and building the review team to producing a detailed final report that synthesizes what the evidence shows and where knowledge gaps remain. Finding What Works in Health Care also proposes a framework for improving the quality of the science underpinning systematic reviews. This book will serve as a vital resource for both sponsors and producers of systematic reviews of comparative effectiveness research.




A Framework for K-12 Science Education


Book Description

Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.




A Research Companion to Principles and Standards for School Mathematics


Book Description

An analysis of how educational research is applied in the process of setting standards for school mathematics. The text focuses on research derived from a wide array of areas, including professional development of teachers, mathematics assessment, and literature on curriculum topics.




The Social Life of Standards


Book Description

Standards. We apply them, uphold them, or fail to meet them. But how do they get made? Through twelve ethnographic case studies, The Social Life of Standards reveals how standards – political and technical tools for organizing society – are developed, applied, subverted, contested, and reassembled by local communities interacting with norms often created by others. Contributors explore standards at work across different countries and contexts, such as Ebola biomedical safety precautions in Senegal, Colombian farmers contesting politicized seed regulations, and the application of Indigenous standards to Canadian environmental assessments. They emphasize the uncomfortable fit between the inconsistent implementation of standards in the real world and the non-negotiable criteria presupposed by external forces. The Social Life of Standards provides support for a reflexive process that involves local engagement. Ultimately, the goal should be to reach a balance between evidence-based science and the social contexts that can inform more useful and appropriate standards.