Supersymmetric Gravity and Black Holes


Book Description

This book is based upon lectures presented in the summer of 2009 at the INFN-Laboratori Nazionali di Frascati School on Attractor Mechanism, directed by Stefano Bellucci. The symposium included such prestigious lecturers as S. Ferrara, G. Dall'Agata, J.F. Morales, J. Simón and M. Trigiante. All lectures were given at a pedagogical, introductory level, which is reflected in the specific "flavor" of this volume. The book also benefits from extensive discussions about, and the related reworking of, the various contributions. It is the fifth volume in a series of books on the general topics of supersymmetry, supergravity, black holes and the attractor mechanism.




Brane-localized Gravity


Book Description

This timely and valuable book provides a detailed pedagogical introduction and treatment of the brane-localized gravity program of Randall and Sundrum, in which gravitational signals are able to localize around our four-dimensional world in the event that it is a brane embedded in an infinitely-sized, higher dimensional anti-de Sitter bulk space. A completely self-contained development of the material needed for brane-world studies is provided for both students and workers in the field, with a significant amount of the material being previously unpublished. Particular attention is given to issues not ordinarily treated in the brane-world literature, such as the completeness of tensor gravitational fluctuation modes, the causality of brane-world propagators, and the status of the massless graviton fluctuation mode in brane worlds in which it is not normalizable.




Gravity, a Geometrical Course


Book Description

‘Gravity, a Geometrical Course’ presents general relativity (GR) in a systematic and exhaustive way, covering three aspects that are homogenized into a single texture: i) the mathematical, geometrical foundations, exposed in a self consistent contemporary formalism, ii) the main physical, astrophysical and cosmological applications, updated to the issues of contemporary research and observations, with glimpses on supergravity and superstring theory, iii) the historical development of scientific ideas underlying both the birth of general relativity and its subsequent evolution. The book is divided in two volumes. Volume Two is covers black holes, cosmology and an introduction to supergravity. The aim of this volume is two-fold. It completes the presentation of GR and it introduces the reader to theory of gravitation beyond GR, which is supergravity. Starting with a short history of the black hole concept, the book covers the Kruskal extension of the Schwarzschild metric, the causal structures of Lorentzian manifolds, Penrose diagrams and a detailed analysis of the Kerr-Newman metric. An extensive historical account of the development of modern cosmology is followed by a detailed presentation of its mathematical structure, including non-isotropic cosmologies and billiards, de Sitter space and inflationary scenarios, perturbation theory and anisotropies of the Cosmic Microwave Background. The last three chapters deal with the mathematical and conceptual foundations of supergravity in the frame of free differential algebras. Branes are presented both as classical solutions of the bulk theory and as world-volume gauge theories with particular emphasis on the geometrical interpretation of kappa-supersymmetry. The rich bestiary of special geometries underlying supergravity lagrangians is presented, followed by a chapter providing glances on the equally rich collection of special solutions of supergravity. Pietro Frè is Professor of Theoretical Physics at the University of Torino, Italy and is currently serving as Scientific Counsellor of the Italian Embassy in Moscow. His scientific passion lies in supergravity and all allied topics, since the inception of the field, in 1976. He was professor at SISSA, worked in the USA and at CERN. He has taught General Relativity for 15 years. He has previously two scientific monographs, “Supergravity and Superstrings” and “The N=2 Wonderland”, He is also the author of a popular science book on cosmology and two novels, in Italian.




Approaches to Quantum Gravity


Book Description

Containing contributions from leading researchers in this field, this book provides a complete overview of this field from the frontiers of theoretical physics research for graduate students and researchers. It introduces the most current approaches to this problem, and reviews their main achievements.




From Quarks and Gluons to Quantum Gravity


Book Description

In August/September 2002, a group of 78 physicists from 50 laboratories in 17 countries met in Erice, Italy, to participate in the 40th Course of the International School of Subnuclear Physics. The purpose of the School was to focus attention on the theoretical and phenomenological developments in gauge theories, as well as in all the other sectors of subnuclear physics. Experimental highights from the most relevant sources of new data were presented and discussed, including the latest news on theoretical developments in quantizing the gravitational forces. This volume constitutes the proceedings of the School. It is dedicated to the memory of Victor Frederick Weisskopf, a founder OCo together with John Stewart Bell, Patrick Maynard Stuart Blackett and Isidor Isaac Rabi OCo of the OC Ettore MajoranaOCO Centre for Scientific Culture, this School being the first of its 114 Schools now in existence. Contents: Mini-Courses on Basics: Physics of QCD Instantons (E V Shuryak); Confinement and Duality (M J Strassler); Status of Super String Theory (E Verlinde); Perturbative Quantum Gravity (G ''t Hooft); Experimental Highlights: Highlights from Gran Sasso Laboratory (A Bettini); Experimental Highlights from Super-Kamiokande (Y Totsuka); The Fermilab Experimental Physics Program (R Tschirhardt); Special Sessions for New Talents: Application of the Large- N c Limit to a Chiral Lagrangian with Resonances (O Cata); Towards the Finite Temperature Gluon Propagator in Landau Gauge YangOCoMills Theory (A Maas); Hermes Measurements of the Nucleon Spin Structure (J Wendland); and other papers. Readership: High energy, experimental and theoretical physicists."




Literature 1986, Part 1


Book Description




Gauge/Gravity Duality


Book Description

Gauge/gravity duality creates new links between quantum theory and gravity. It has led to new concepts in mathematics and physics, and provides new tools to solve problems in many areas of theoretical physics. This book is the first textbook on this important topic, enabling graduate students and researchers in string theory and particle, nuclear and condensed matter physics to get acquainted with the subject. Focusing on the fundamental aspects as well as on the applications, this textbook guides readers through a thorough explanation of the central concepts of gauge/gravity duality. For the AdS/CFT correspondence, it explains in detail how string theory provides the conjectured map. Generalisations to less symmetric cases of gauge/gravity duality and their applications are then presented, in particular to finite temperature and density, hydrodynamics, QCD-like theories, the quark-gluon plasma and condensed matter systems. The textbook features a large number of exercises, with solutions available online at www.cambridge.org/9781107010345.




Quantum Gravity


Book Description

This book provides the reader with an overview of the different mathematical attempts to quantize gravity written by leading experts in this field. Also discussed are the possible experimental bounds on quantum gravity effects. The contributions have been strictly refereed and are written in an accessible style. The present volume emerged from the 2nd Blaubeuren Workshop "Mathematical and Physical Aspects of Quantum Gravity".




Representation Theory and Mathematical Physics


Book Description

This volume contains the proceedings of the conference on Representation Theory and Mathematical Physics, in honor of Gregg Zuckerman's 60th birthday, held October 24-27, 2009, at Yale University. Lie groups and their representations play a fundamental role in mathematics, in particular because of connections to geometry, topology, number theory, physics, combinatorics, and many other areas. Representation theory is one of the cornerstones of the Langlands program in number theory, dating to the 1970s. Zuckerman's work on derived functors, the translation principle, and coherent continuation lie at the heart of the modern theory of representations of Lie groups. One of the major unsolved problems in representation theory is that of the unitary dual. The fact that there is, in principle, a finite algorithm for computing the unitary dual relies heavily on Zuckerman's work. In recent years there has been a fruitful interplay between mathematics and physics, in geometric representation theory, string theory, and other areas. New developments on chiral algebras, representation theory of affine Kac-Moody algebras, and the geometric Langlands correspondence are some of the focal points of this volume. Recent developments in the geometric Langlands program point to exciting connections between certain automorphic representations and dual fibrations in geometric mirror symmetry.




Los Alamos Science


Book Description