Nonlinear Dynamics with Polymers


Book Description

Closing a gap in the literature, this is the first comprehensive handbook on this modern and important polymer topic. Edited by highly experienced and top scientists in the field, this ready reference covers all aspects, including material science, biopolymers, gels, phase separating systems, frontal polymerization and much more. The introductory chapter offers the perfect starting point for the non-expert.




Polymer Science: A Comprehensive Reference


Book Description

The progress in polymer science is revealed in the chapters of Polymer Science: A Comprehensive Reference, Ten Volume Set. In Volume 1, this is reflected in the improved understanding of the properties of polymers in solution, in bulk and in confined situations such as in thin films. Volume 2 addresses new characterization techniques, such as high resolution optical microscopy, scanning probe microscopy and other procedures for surface and interface characterization. Volume 3 presents the great progress achieved in precise synthetic polymerization techniques for vinyl monomers to control macromolecular architecture: the development of metallocene and post-metallocene catalysis for olefin polymerization, new ionic polymerization procedures, and atom transfer radical polymerization, nitroxide mediated polymerization, and reversible addition-fragmentation chain transfer systems as the most often used controlled/living radical polymerization methods. Volume 4 is devoted to kinetics, mechanisms and applications of ring opening polymerization of heterocyclic monomers and cycloolefins (ROMP), as well as to various less common polymerization techniques. Polycondensation and non-chain polymerizations, including dendrimer synthesis and various "click" procedures, are covered in Volume 5. Volume 6 focuses on several aspects of controlled macromolecular architectures and soft nano-objects including hybrids and bioconjugates. Many of the achievements would have not been possible without new characterization techniques like AFM that allowed direct imaging of single molecules and nano-objects with a precision available only recently. An entirely new aspect in polymer science is based on the combination of bottom-up methods such as polymer synthesis and molecularly programmed self-assembly with top-down structuring such as lithography and surface templating, as presented in Volume 7. It encompasses polymer and nanoparticle assembly in bulk and under confined conditions or influenced by an external field, including thin films, inorganic-organic hybrids, or nanofibers. Volume 8 expands these concepts focusing on applications in advanced technologies, e.g. in electronic industry and centers on combination with top down approach and functional properties like conductivity. Another type of functionality that is of rapidly increasing importance in polymer science is introduced in volume 9. It deals with various aspects of polymers in biology and medicine, including the response of living cells and tissue to the contact with biofunctional particles and surfaces. The last volume is devoted to the scope and potential provided by environmentally benign and green polymers, as well as energy-related polymers. They discuss new technologies needed for a sustainable economy in our world of limited resources. Provides broad and in-depth coverage of all aspects of polymer science from synthesis/polymerization, properties, and characterization methods and techniques to nanostructures, sustainability and energy, and biomedical uses of polymers Provides a definitive source for those entering or researching in this area by integrating the multidisciplinary aspects of the science into one unique, up-to-date reference work Electronic version has complete cross-referencing and multi-media components Volume editors are world experts in their field (including a Nobel Prize winner)




Advanced Materials, Polymers, and Composites


Book Description

This book reviews several domains of polymer science, especially new trends in polymerization synthesis, physical-chemical properties, and inorganic systems. Composites and nanocomposites are also covered in this book, emphasizing nanotechnologies and their impact on the enhancement of physical and mechanical properties of these new materials. Kinetics and simulation are discussed and also considered as promising techniques for achieving chemistry and predicting physical property goals. This book presents a selection of interdisciplinary papers on the state of knowledge of each topic under consideration through a combination of overviews and original unpublished research.




Wrinkled Polymer Surfaces


Book Description

This book presents the state of the art in surface wrinkling, including current and future potential applications in biomedicine, tissue engineering, drug delivery, microfluidic devices, and other promising areas. Their use as templates, flexible electronics, and supports with controlled wettability and/or adhesion for biorelated applications demonstrate how the unique characteristics of wrinkled interfaces play a distinguishing and remarkable role. The fabrication approaches employed to induce wrinkle formation and the potential to fine-tune the amplitude and period of the wrinkles, their functionality, and their final morphology are thoroughly described. An overview of the main applications in which these buckled interfaces have already been employed or may have an impact in the near future is included. Presents a detailed description of the physical phenomena and strategies occurring at polymer surfaces to produce wrinkled surface patterns; Examines the different methodologies to produce morphology-controlled wrinkled surface patterns by means of physical and chemical treatment methods; Provides clear information on current and potential applications in flexible electronics and biomaterials, which are leading the use of these materials.




High-Performance Polymers for Engineering-Based Composites


Book Description

High-Performance Polymers for Engineering-Based Composites presents a selection of investigations and innovative research in polymer chemistry and advanced materials. The book includes case studies in the field of nanocomposites. The volume provides coverage of new research in polymer science and engineering with applications in chemical engineerin




Group 13 Chemistry


Book Description

Group 13 Chemistry: From Fundamentals to Applications contains research reports and review articles in both the fundamental and applied aspects of group 13 chemistry. Topics covered illustrate the widespread influence of group 13 chemistry in modern science and technology. This volume addresses recent research and technological achievements involving group 13 chemistry and provides important background information for both experienced practitioners and novices. New developments in group 13 compounds, the stabilization of compounds of the lighter group 13 elements in their +1 oxidation state, and electron-deficient group 13 clusters, are presented. Because of the unusual geometries of newly developed electron-deficient group 13 clusters, chemists have had to reexamine and refine their models of structure and bonding. Furthermore, the stabilization of compounds of the lighter group 13 elements in their +1 oxidation state has produced some unique molecular structures and reactivity. Group 13 compounds are well known as reagents for organic synthesis and as both catalysts and cocatalysts for asymmetric organic transformations and alkene and ring-opening polymerization. Now, the design of multidentate Lewis acids is expected to exhibit enhanced activity via the cooperation of multiple electrophilic sites. Finally, a special section devoted to aluminum chemistry examines the environmental sources and biological effects of this most abundant metal. Research implicating aluminum in the etiology of neurological diseases is examined as well as potentially useful biochemical applications for aluminum in the form of Al4-.




Chemical Engineering of Polymers


Book Description

In this important volume, the structures and functions of these advanced polymer and composite systems are evaluated with respect to improved or novel performance, and the potential implications of those developments for the future of polymer-based composites and multifunctional materials are discussed. It focuses exclusively on the latest research related to polymer and composite materials, especially new trends in frontal polymerization and copolymerization synthesis, functionalization of polymers, physical properties, and hybrid systems. Several chapters are devoted to composites and nanocomposites.




Encyclopedia of Polymer Composites


Book Description

In the last several years, polymer composites have been used heavily in the construction sector, such as to repair or design buildings and bridges, strengthen structures and as stand-alone components. About 30% of all polymers produced each year are used in the civil engineering and building industries. In addition to construction, polymer composites are also used in transportation (moulded parts, fuel and gas tanks), aerospace (satellites and aircraft structures), marine, biomedical (dental fixtures, prosthetic devices), electronics and in recreation industries. Such properties associated with polymer composites, in addition to its performance and applications, are continually being researched. Some topics examined in this book include the durability of the base components of FRP (fiber-reinforced polymer), specifically designed for civil engineering industry. The most common environmental agents, mostly responsible for the deterioration of the materials performance are also discussed. Furthermore, the interfacial adhesion between nanotubes and polymers and the different strategies to promote adhesion are explored to help readers understand the potential and challenges faced by scientists and engineers regarding the use of carbon nanotubes as a reinforcement phase in nanocomposites. This book also reviews the state-of-the-art of syntactic foams and shape memory polymers. The underlying principle for self-heating is also analyzed. Other chapters examine the processing of polymers into antimicrobial materials using polymer/clay nanotechnology, the various methods of synthesis for polyaniline-based nanoparticle-hybrid materials, and the steps towards understanding the complex relationships between specific factors in the production of plastic composites.




Photoinitiators


Book Description

Photoinitiators A comprehensive text that covers everything from the processes and mechanisms to the reactions and industrial applications of photoinitiators Photoinitiators offers a wide-ranging overview of existing photoinitiators and photoinitiating systems and their uses in ever-growing green technologies. The authors—noted experts on the topic—provide a concise review of the backgrounds in photopolymerization and photochemistry, explain the available structures, and examine the excited state properties, involved mechanisms, and structure, reactivity, and efficiency relationships. The text also contains information on the latest developments and trends in the design of novel tailor-made systems. The book explores the role of current systems in existing and emerging processes and applications. Comprehensive in scope, it covers polymerization of thick samples and in-shadow areas, polymerization under LEDs, NIR light induced thermal polymerization, photoinitiators for novel specific and improved properties, and much more. Written by an experienced and internationally renowned team of authors, this important book: Provides detailed information about excited state processes, mechanisms and design of efficient photoinitiator systems Discusses the performance of photoinitiators of polymerization by numerous examples of reactions and application Includes information on industrial applications Presents a review of current developments and challenges Offers an introduction to the background information necessary to understand thefield The role played by photoinitiators in a variety of different polymerization reactions Written for polymer chemists, photochemists, and materials scientists, Photoinitiators will also earn a place in the libraries of photochemists seeking an authoritative, one-stop guide to the processes, mechanisms, and industrial applications of photoinitiators.