Frontiers in Psychiatry


Book Description

This book reviews key recent advances and new frontiers within psychiatric research and clinical practice. These advances either represent or are enabling paradigm shifts in the discipline and are influencing how we observe, derive and test hypotheses, and intervene. Progress in information technology is allowing the collection of scattered, fragmented data and the discovery of hidden meanings from stored data, and the impacts on psychiatry are fully explored. Detailed attention is also paid to the applications of artificial intelligence, machine learning, and data science technology in psychiatry and to their role in the development of new hypotheses, which in turn promise to lead to new discoveries and treatments. Emerging research methods for precision medicine are discussed, as are a variety of novel theoretical frameworks for research, such as theoretical psychiatry, the developmental approach to the definition of psychopathology, and the theory of constructed emotion. The concluding section considers novel interventions and treatment avenues, including psychobiotics, the use of neuromodulation to augment cognitive control of emotion, and the role of the telomere-telomerase system in psychopharmacological interventions.




Evolution in Computational Intelligence


Book Description

This book presents the proceedings of 8th International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA 2020), which aims to bring together researchers, scientists, engineers and practitioners to share new ideas and experiences in the domain of intelligent computing theories with prospective applications to various engineering disciplines. The book is divided into two volumes: Evolution in Computational Intelligence (Volume 1) and Intelligent Data Engineering and Analytics (Volume 2). Covering a broad range of topics in computational intelligence, the book features papers on theoretical as well as practical aspects of areas such as ANN and genetic algorithms, computer interaction, intelligent control optimization, evolutionary computing, intelligent e-learning systems, machine learning, mobile computing, and multi-agent systems. As such, it is a valuable reference resource for postgraduate students in various engineering disciplines.




Cyber Crime and Forensic Computing


Book Description

This book presents a comprehensive study of different tools and techniques available to perform network forensics. Also, various aspects of network forensics are reviewed as well as related technologies and their limitations. This helps security practitioners and researchers in better understanding of the problem, current solution space, and future research scope to detect and investigate various network intrusions against such attacks efficiently. Forensic computing is rapidly gaining importance since the amount of crime involving digital systems is steadily increasing. Furthermore, the area is still underdeveloped and poses many technical and legal challenges. The rapid development of the Internet over the past decade appeared to have facilitated an increase in the incidents of online attacks. There are many reasons which are motivating the attackers to be fearless in carrying out the attacks. For example, the speed with which an attack can be carried out, the anonymity provided by the medium, nature of medium where digital information is stolen without actually removing it, increased availability of potential victims and the global impact of the attacks are some of the aspects. Forensic analysis is performed at two different levels: Computer Forensics and Network Forensics. Computer forensics deals with the collection and analysis of data from computer systems, networks, communication streams and storage media in a manner admissible in a court of law. Network forensics deals with the capture, recording or analysis of network events in order to discover evidential information about the source of security attacks in a court of law. Network forensics is not another term for network security. It is an extended phase of network security as the data for forensic analysis are collected from security products like firewalls and intrusion detection systems. The results of this data analysis are utilized for investigating the attacks. Network forensics generally refers to the collection and analysis of network data such as network traffic, firewall logs, IDS logs, etc. Technically, it is a member of the already-existing and expanding the field of digital forensics. Analogously, network forensics is defined as "The use of scientifically proved techniques to collect, fuses, identifies, examine, correlate, analyze, and document digital evidence from multiple, actively processing and transmitting digital sources for the purpose of uncovering facts related to the planned intent, or measured success of unauthorized activities meant to disrupt, corrupt, and or compromise system components as well as providing information to assist in response to or recovery from these activities." Network forensics plays a significant role in the security of today’s organizations. On the one hand, it helps to learn the details of external attacks ensuring similar future attacks are thwarted. Additionally, network forensics is essential for investigating insiders’ abuses that constitute the second costliest type of attack within organizations. Finally, law enforcement requires network forensics for crimes in which a computer or digital system is either being the target of a crime or being used as a tool in carrying a crime. Network security protects the system against attack while network forensics focuses on recording evidence of the attack. Network security products are generalized and look for possible harmful behaviors. This monitoring is a continuous process and is performed all through the day. However, network forensics involves post mortem investigation of the attack and is initiated after crime notification. There are many tools which assist in capturing data transferred over the networks so that an attack or the malicious intent of the intrusions may be investigated. Similarly, various network forensic frameworks are proposed in the literature.




Deep Reinforcement Learning


Book Description

This book starts by presenting the basics of reinforcement learning using highly intuitive and easy-to-understand examples and applications, and then introduces the cutting-edge research advances that make reinforcement learning capable of out-performing most state-of-art systems, and even humans in a number of applications. The book not only equips readers with an understanding of multiple advanced and innovative algorithms, but also prepares them to implement systems such as those created by Google Deep Mind in actual code. This book is intended for readers who want to both understand and apply advanced concepts in a field that combines the best of two worlds – deep learning and reinforcement learning – to tap the potential of ‘advanced artificial intelligence’ for creating real-world applications and game-winning algorithms.




Machine Learning for Sustainable Development


Book Description

The book will focus on the applications of machine learning for sustainable development. Machine learning (ML) is an emerging technique whose diffusion and adoption in various sectors (such as energy, agriculture, internet of things, infrastructure) will be of enormous benefit. The state of the art of machine learning models is most useful for forecasting and prediction of various sectors for sustainable development.




OECD Digital Education Outlook 2021 Pushing the Frontiers with Artificial Intelligence, Blockchain and Robots


Book Description

How might digital technology and notably smart technologies based on artificial intelligence (AI), learning analytics, robotics, and others transform education? This book explores such question. It focuses on how smart technologies currently change education in the classroom and the management of educational organisations and systems.




New Frontiers in Artificial Intelligence


Book Description

This book constitutes extended, revised and selected papers from the 11th International Symposium of Artificial Intelligence supported by the Japanese Society for Artificial Intelligence, JSAI-isAI 2019. It was held in November 2019 in Yokohama, Japan. The 26 papers were carefully selected from 46 submissions and deal with topics of AI research and are organized into 4 sections, according to the 4 workshops: JURISIN 2019, AI-Biz 2019, LENLS 16, and Kansei-AI 2019.




New Frontiers in Computational Intelligence and Its Applications


Book Description

Computational Intelligence is a broad and active research area that is growing rapidly due to the many successful applications of these new techniques in very diverse problems. Many industries have benefited from adopting this technology. The increased number of patents and diverse range of products developed using computational intelligence methods is evidence of this fact. The goal of this book is to provide highlights of the current research in computational intelligence area. The book consists of research papers in the fields of neural networks, fuzzy logic, evolutionary computing, hybrid evolutionary computing-fuzzy logic systems, hybrid neural networks-evolutionary computing and fuzzy logic systems, image processing and vision, advances in robotics, control and manufacturing, and rough sets.




Computational Models of Argument


Book Description

The investigation of computational models of argument is a rich and fascinating interdisciplinary research field with two ultimate aims: the theoretical goal of understanding argumentation as a cognitive phenomenon by modeling it in computer programs, and the practical goal of supporting the development of computer-based systems able to engage in argumentation-related activities with human users or among themselves. The biennial International Conferences on Computational Models of Argument (COMMA) provide a dedicated forum for the presentation and discussion of the latest advancements in the field, and cover both basic research and innovative applications. This book presents the proceedings of COMMA 2020. Due to the Covid-19 pandemic, COMMA 2020 was held as an online event on the originally scheduled dates of 8 -11 September 2020, organised by the University of Perugia, Italy. The book includes 28 full papers and 13 short papers selected from a total of 78 submissions, the abstracts of 3 invited talks and 13 demonstration abstracts. The interdisciplinary nature of the field is reflected, and contributions cover both theory and practice. Theoretical contributions include new formal models, the study of formal or computational properties of models, designs for implemented systems and experimental research. Practical papers include applications to medicine, law and criminal investigation, chatbots and online product reviews. The argument-mining trend from previous COMMA’s is continued, while an emerging trend this year is the use of argumentation for explainable AI. The book provided an overview of the latest work on computational models of argument, and will be of interest to all those working in the field.




Computational Intelligence and Feature Selection


Book Description

The rough and fuzzy set approaches presented here open up many new frontiers for continued research and development Computational Intelligence and Feature Selection provides readers with the background and fundamental ideas behind Feature Selection (FS), with an emphasis on techniques based on rough and fuzzy sets. For readers who are less familiar with the subject, the book begins with an introduction to fuzzy set theory and fuzzy-rough set theory. Building on this foundation, the book provides: A critical review of FS methods, with particular emphasis on their current limitations Program files implementing major algorithms, together with the necessary instructions and datasets, available on a related Web site Coverage of the background and fundamental ideas behind FS A systematic presentation of the leading methods reviewed in a consistent algorithmic framework Real-world applications with worked examples that illustrate the power and efficacy of the FS approaches covered An investigation of the associated areas of FS, including rule induction and clustering methods using hybridizations of fuzzy and rough set theories Computational Intelligence and Feature Selection is an ideal resource for advanced undergraduates, postgraduates, researchers, and professional engineers. However, its straightforward presentation of the underlying concepts makes the book meaningful to specialists and nonspecialists alike.