Frontiers In Entropy Across The Disciplines - Panorama Of Entropy: Theory, Computation, And Applications


Book Description

Frontiers in Entropy Across the Disciplines presents a panorama of entropy emphasizing mathematical theory, physical and scientific significance, computational methods, and applications in mathematics, physics, statistics, engineering, biomedical signals, and signal processing.In the last century classical concepts of entropy were introduced in the areas of thermodynamics, information theory, probability theory, statistics, dynamical systems, and ergodic theory. During the past 50 years, dozens of new concepts of entropy have been introduced and studied in many disciplines. This volume captures significant developments in this arena. It features expository, review, and research papers by distinguished mathematicians and scientists from many disciplines. The level of mathematics ranges from intermediate level to research level. Each chapter contains a comprehensive list of references. Topics include entropy and society, entropy and time, Souriau entropy on symplectic model of statistical physics, new definitions of entropy, geometric theory of heat and information, maximum entropy in Bayesian networks, maximum entropy methods, entropy analysis of biomedical signals (review and comparison of methods), spectral entropy and its application to video coding and speech coding, a comprehensive review of 50 years of entropy in dynamics, a comprehensive review on entropy, entropy-like quantities and applications, topological entropy of multimodal maps, entropy production in complex systems, entropy production and convergence to equilibrium, reversibility and irreversibility in entropy, nonequilibrium entropy, index of various entropy, entropy and the greatest blunder ever.




Tensor Algebra And Analysis For Engineers: With Applications To Differential Geometry Of Curves And Surfaces


Book Description

In modern theoretical and applied mechanics, tensors and differential geometry are two almost essential tools. Unfortunately, in university courses for engineering and mechanics students, these topics are often poorly treated or even completely ignored. At the same time, many existing, very complete texts on tensors or differential geometry are so advanced and written in abstract language that discourage young readers looking for an introduction to these topics specifically oriented to engineering applications.This textbook, mainly addressed to graduate students and young researchers in mechanics, is an attempt to fill the gap. Its aim is to introduce the reader to the modern mathematical tools and language of tensors, with special applications to the differential geometry of curves and surfaces in the Euclidean space. The exposition of the matter is sober, directly oriented to problems that are ordinarily found in mechanics and engineering. Also, the language and symbols are tailored to those usually employed in modern texts of continuum mechanics.Though not exhaustive, as any primer textbook, this volume constitutes a coherent, self-contained introduction to the mathematical tools and results necessary in modern continuum mechanics, concerning vectors, 2nd- and 4th-rank tensors, curves, fields, curvilinear coordinates, and surfaces in the Euclidean space. More than 100 exercises are proposed to the reader, many of them complete the theoretical part through additional results and proofs. To accompany the reader in learning, all the exercises are entirely developed and solved at the end of the book.




Generalized Radon Transforms And Imaging By Scattered Particles: Broken Rays, Cones, And Stars In Tomography


Book Description

A generalized Radon transform (GRT) maps a function to its weighted integrals along a family of curves or surfaces. Such operators appear in mathematical models of various imaging modalities. The GRTs integrating along smooth curves and surfaces (lines, planes, circles, spheres, amongst others) have been studied at great lengths for decades, but relatively little attention has been paid to transforms integrating along non-smooth trajectories. Recently, an interesting new class of GRTs emerged at the forefront of research in integral geometry. The two common features of these transforms are the presence of a 'vertex' in their paths of integration (broken rays, cones, and stars) and their relation to imaging techniques based on physics of scattered particles (Compton camera imaging, single scattering tomography, etc).This book covers the relevant imaging modalities, their mathematical models, and the related GRTs. The discussion of the latter comprises a thorough exploration of their known mathematical properties, including injectivity, inversion, range description and microlocal analysis. The mathematical background required for reading most of the book is at the level of an advanced undergraduate student, which should make its content attractive for a large audience of specialists interested in imaging. Mathematicians may appreciate certain parts of the theory that are particularly elegant with connections to functional analysis, PDEs and algebraic geometry.




The Maximum Entropy Method


Book Description

Forty years ago, in 1957, the Principle of Maximum Entropy was first intro duced by Jaynes into the field of statistical mechanics. Since that seminal publication, this principle has been adopted in many areas of science and technology beyond its initial application. It is now found in spectral analysis, image restoration and a number of branches ofmathematics and physics, and has become better known as the Maximum Entropy Method (MEM). Today MEM is a powerful means to deal with ill-posed problems, and much research work is devoted to it. My own research in the area ofMEM started in 1980, when I was a grad uate student in the Department of Electrical Engineering at the University of Sydney, Australia. This research work was the basis of my Ph.D. the sis, The Maximum Entropy Method and Its Application in Radio Astronomy, completed in 1985. As well as continuing my research in MEM after graduation, I taught a course of the same name at the Graduate School, Chinese Academy of Sciences, Beijingfrom 1987to 1990. Delivering the course was theimpetus for developing a structured approach to the understanding of MEM and writing hundreds of pages of lecture notes.




Frontiers In Orthogonal Polynomials And Q-series


Book Description

This volume aims to highlight trends and important directions of research in orthogonal polynomials, q-series, and related topics in number theory, combinatorics, approximation theory, mathematical physics, and computational and applied harmonic analysis. This collection is based on the invited lectures by well-known contributors from the International Conference on Orthogonal Polynomials and q-Series, that was held at the University of Central Florida in Orlando, on May 10-12, 2015. The conference was dedicated to Professor Mourad Ismail on his 70th birthday.The editors strived for a volume that would inspire young researchers and provide a wealth of information in an engaging format. Theoretical, combinatorial and computational/algorithmic aspects are considered, and each chapter contains many references on its topic, when appropriate.




Lectures on Gas Theory


Book Description

This title is part of UC Press's Voices Revived program, which commemorates University of California Press’s mission to seek out and cultivate the brightest minds and give them voice, reach, and impact. Drawing on a backlist dating to 1893, Voices Revived makes high-quality, peer-reviewed scholarship accessible once again using print-on-demand technology. This title was originally published in 1964.







Mathematicians of the World, Unite!


Book Description

This vividly illustrated history of the International Congress of Mathematicians- a meeting of mathematicians from around the world held roughly every four years- acts as a visual history of the 25 congresses held between 1897 and 2006, as well as a story of changes in the culture of mathematics over the past century. Because the congress is an int







Infinity


Book Description

"The infinite! No other question has ever moved so profoundly the spirit of man; no other idea has so fruitfully stimulated his intellect; yet no other concept stands in greater need of clarification than that of the infinite." - David Hilbert This interdisciplinary study of infinity explores the concept through the prism of mathematics and then offers more expansive investigations in areas beyond mathematical boundaries to reflect the broader, deeper implications of infinity for human intellectual thought. More than a dozen world‐renowned researchers in the fields of mathematics, physics, cosmology, philosophy, and theology offer a rich intellectual exchange among various current viewpoints, rather than displaying a static picture of accepted views on infinity. The book starts with a historical examination of the transformation of infinity from a philosophical and theological study to one dominated by mathematics. It then offers technical discussions on the understanding of mathematical infinity. Following this, the book considers the perspectives of physics and cosmology: Can infinity be found in the real universe? Finally, the book returns to questions of philosophical and theological aspects of infinity.