Frontiers in Staphylococcus aureus


Book Description

Staphylococcus was first recognized as a human pathogen in 1880 and was named for its grape cluster-like appearance. In 1884, Staphylococcus aureus was identified and named for its vibrant golden color, which was later found to be the result of golden toxin production. Here, experts examine in-depth patterns of S. aureus colonization and exposures in humans, mammals, and birds that have led to the development of various clinical diseases. The mode of transmission of S. aureus and different methods for its detection in different samples are defined. Conventional antibiotic options to treat this aggressive, multifaceted, and readily adaptable pathogen are becoming limited. Alternative, novel chemotherapeutics to target S. aureus are discussed in the pages within, including herbal medicines, bee products, and modes of delivery.




The Rise of Virulence and Antibiotic Resistance in Staphylococcus aureus


Book Description

Staphylococcus aureus S. aureus is a growing issue both within hospitals and community because of its virulence determinants and the continuing emergence of new strains resistant to antimicrobiotics. In this book, we present the state of the art of S. aureus virulence mechanisms and antibiotic-resistance profiles, providing an unprecedented and comprehensive collection of up-to-date research about the evolution, dissemination, and mechanisms of different staphylococcal antimicrobial resistance patterns alongside bacterial virulence determinants and their impact in the medical field. We include several review chapters to allow readers to better understand the mechanisms of methicillin resistance, glycopeptide resistance, and horizontal gene transfer and the effects of alterations in S. aureus membranes and cell walls on drug resistance. In addition, we include chapters dedicated to unveiling S. aureus pathogenicity with the most current research available on S. aureus exfoliative toxins, enterotoxins, surface proteins, biofilm, and defensive responses of S. aureus to antibiotic treatment.




Surgical Site Infection


Book Description

Infections that occur in the wound created by an invasive surgical procedure are generally referred to as surgical site infections (SSIs). SSIs are one of the most important causes of healthcare-associated infections (HCAIs). A prevalence survey undertaken in 2006 suggested that approximately 8% of patients in hospital in the UK have an HCAI. SSIs accounted for 14% of these infections and nearly 5% of patients who had undergone a surgical procedure were found to have developed an SSI. However, prevalence studies tend to underestimate SSI because many of these infections occur after the patient has been discharged from hospital. SSIs are associated with considerable morbidity and it has been reported that over one-third of postoperative deaths are related, at least in part, to SSI. However, it is important to recognise that SSIs can range from a relatively trivial wound discharge with no other complications to a life-threatening condition. Other clinical outcomes of SSIs include poor scars that are cosmetically unacceptable, such as those that are spreading, hypertrophic or keloid, persistent pain and itching, restriction of movement, particularly when over joints, and a significant impact on emotional wellbeing. SSI can double the length of time a patient stays in hospital and thereby increase the costs of health care. Additional costs attributable to SSI of between £814 and £6626 have been reported depending on the type of surgery and the severity of the infection. The main additional costs are related to re-operation, extra nursing care and interventions, and drug treatment costs. The indirect costs, due to loss of productivity, patient dissatisfaction and litigation, and reduced quality of life, have been studied less extensively.




Staphylococcus aureus


Book Description

This volume offers a comprehensive overview of basic and applied aspects of Staphylococcus aureus, which is one of the most important human pathogens. It includes sixteen chapters that address the microbiology and immunology of S. aureus, the pathology of its key manifestations, and the current standard of care. Further, it reviews cutting-edge advances in alternative therapeutic and prophylactic approaches to antibiotics. All chapters were written by respected experts in the field – presenting recent findings on a diverse range of aspects, they are nonetheless interlinked. As such, the book is a must-read for all researchers, clinicians and technicians engaged in basic or applied science work involving S. aureus.




Staphylococcus and Streptococcus


Book Description

Staphylococcus spp. and Streptococcus spp. have not only got pathogenic isolates, but also non-pathogenic isolates. Staphylococcus spp. and Streptococcus spp. that are Gram positive cocci are the main pathogens in several infections. Virulence factors such as usual and unusual surface proteins encoded by resistance genes are the main causes of pathogenesis. Multidrug-resistant pathogens that are the main causes of morbidity and mortality worldwide have the ability to synthesize a number of destructive enzymes encoded by resistance genes such as ?-lactamases. Resistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pneumoniae, Group A, and Group B Streptococcus have emerged throughout the world. To eliminate these resistant pathogens that cause untreatable, acute, and chronic infections, different new antimicrobials must be developed and used. The goal of this book is to provide the latest information about the above topics.




Antibiotic Drug Resistance


Book Description

This book presents a thorough and authoritative overview of the multifaceted field of antibiotic science – offering guidance to translate research into tools for prevention, diagnosis, and treatment of infectious diseases. Provides readers with knowledge about the broad field of drug resistance Offers guidance to translate research into tools for prevention, diagnosis, and treatment of infectious diseases Links strategies to analyze microbes to the development of new drugs, socioeconomic impacts to therapeutic strategies, and public policies to antibiotic-resistance-prevention strategies







Bacterial Biofilms


Book Description

This book examines biofilms in nature. Organized into four parts, this book addresses biofilms in wastewater treatment, inhibition of biofilm formation, biofilms and infection, and ecology of biofilms. It is designed for clinicians, researchers, and industry professionals in the fields of microbiology, biotechnology, ecology, and medicine as well as graduate and postgraduate students.




Food Microbiology


Book Description

Presents issues in food microbiology.




Quorum Sensing vs Quorum Quenching: A Battle with No End in Sight


Book Description

Microbial relationships with all life forms can be as free living, symbiotic or pathogenic. Human beings harbor 10 times more microbial cells than their own. Bacteria are found on the skin surface, in the gut and other body parts. Bacteria causing diseases are the most worrisome. Most of the infectious diseases are caused by bacterial pathogens with an ability to form biofilm. Bacteria within the biofilm are up to 1000 times more resistant to antibiotics. This has taken a more serious turn with the evolution of multiple drug resistant bacteria. Health Departments are making efforts to reduce high mortality and morbidity in man caused by them. Bacterial Quorum sensing (QS), a cell density dependent phenomenon is responsible for a wide range of expressions such as pathogenesis, biofilm formation, competence, sporulation, nitrogen fixation, etc. Majority of these organisms that are important for medical, agriculture, aquaculture, water treatment and remediation, archaeological departments are: Aeromonas, Acinetobacter, Bacillus, Clostridia, Enterococcus, Pseudomonas, Vibrio and Yersinia spp. Biosensors and models have been developed to detect QS systems. Strategies for inhibiting QS system through natural and synthetic compounds have been presented here. The biotechnological applications of QS inhibitors (QSIs) in diverse areas have also been dealt with. Although QSIs do not affect growth and are less likely to impose selective pressure on bacteria, however, a few reports have raised doubts on the fate of QSIs. This book addresses a few questions. Will bacteria develop mechanisms to evade QSIs? Are we watching yet another defeat at the hands of bacteria? Or will we be acting intelligently and survive the onslaughts of this Never Ending battle?