Frontiers In Pattern Recognition And Artificial Intelligence


Book Description

The fifth volume in this book series consists of a collection of new papers written by a diverse group of international scholars. Papers and presentations were carefully selected from 160 papers submitted to the International Conference on Pattern Recognition and Artificial Intelligence held in Montreal, Quebec (May 2018) and an associated free public lecture entitled 'Artificial Intelligence and Pattern Recognition: Trendy Technologies in Our Modern Digital World'. Chapters address topics such as the evolution of AI, natural language processing, off and on-line handwriting analysis, tracking and detection systems, neural networks, rating video games, computer-aided diagnosis, and digital learning.Within an increasingly digital world, 'artificial intelligence' is becoming a household term and a topic of great interest to many people worldwide. Pattern recognition, in using key features to classify data, has a strong relationship with artificial intelligence. This book not only complements other monographs in the series, it also provides the latest information. It is geared to promote interest and understanding about pattern recognition and artificial intelligence to the general public. It may also be of interest to graduate students and researchers in the field. Rather than focusing on one specific area, the book introduces readers to various basic concepts and to various potential areas where pattern recognition and artificial intelligence can be applied to make valuable contributions to other fields such as medicine, teaching and learning, forensic science, surveillance, online reviews, computer vision and object tracking.




Image Pattern Recognition


Book Description

The field of biometrics utilizes computer models of the physical and behavioral characteristics of human beings with a view to reliable personal identification. The human characteristics of interest include visual images, speech, and indeed anything which might help to uniquely identify the individual. The other side of the biometrics coin is biometric synthesis OCo rendering biometric phenomena from their corresponding computer models. For example, we could generate a synthetic face from its corresponding computer model. Such a model could include muscular dynamics to model the full gamut of human emotions conveyed by facial expressions. This book is a collection of carefully selected papers presenting the fundamental theory and practice of various aspects of biometric data processing in the context of pattern recognition. The traditional task of biometric technologies OCo human identification by analysis of biometric. data OCo is extended to include the new discipline of biometric synthesis."







Invariants for Pattern Recognition and Classification


Book Description

This book was conceived from the realization that there was a need to update recent work on invariants in a single volume providing a useful set of references and pointers to related work. Since the publication in 1992 of J L Mundy and A Zisserman's Geometric Invariance in Computer Vision, the subject has been evolving rapidly. New approaches to invariants have been proposed and novel ways of defining and applying invariants to practical problem solving are testimony to the fundamental importance of the study of invariants to machine vision. This book represents a snapshot of current research around the world. A version of this collection of papers has appeared in the International Journal of Pattern Recognition and Artificial Intelligence (December 1999). The papers in this book are extended versions of the original material published in the journal. They are organized into two categories: foundations and applications. Foundation papers present new ways of defining or analyzing invariants, andapplication papers present novel ways in which known invariant theory is extended and effectively applied to real-world problems in interesting and difficult contexts. Each category contains roughly half of the papers, but there is considerable overlap. All papers carry an element of novelty and generalization that will be useful to theoreticians and practitioners alike. It is hoped that this volume will be not only useful but also inspirational to researchers in image processing, pattern recognition and computer vision at large.




Pattern Recognition and Machine Learning


Book Description

This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.




Advances In Pattern Recognition And Artificial Intelligence


Book Description

This book includes reviewed papers by international scholars from the 2020 International Conference on Pattern Recognition and Artificial Intelligence (held online). The papers have been expanded to provide more details specifically for the book. It is geared to promote ongoing interest and understanding about pattern recognition and artificial intelligence. Like the previous book in the series, this book covers a range of topics and illustrates potential areas where pattern recognition and artificial intelligence can be applied. It highlights, for example, how pattern recognition and artificial intelligence can be used to classify, predict, detect and help promote further discoveries related to credit scores, criminal news, national elections, license plates, gender, personality characteristics, health, and more.Chapters include works centred on medical and financial applications as well as topics related to handwriting analysis and text processing, internet security, image analysis, database creation, neural networks and deep learning. While the book is geared to promote interest from the general public, it may also be of interest to graduate students and researchers in the field.




Handbook Of Pattern Recognition And Computer Vision (2nd Edition)


Book Description

The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.




Frontiers of Remote Sensing Information Processing


Book Description

Written by leaders in the field of remote sensing information processing, this book covers the frontiers of remote sensors, especially with effective algorithms for signal/image processing and pattern recognition with remote sensing data. Sensor and data fusion issues, SAR images, hyperspectral images, and related special topics are also examined. Techniques making use of neural networks, wavelet transforms, and knowledge-based systems are emphasized. A special set of three chapters is devoted to seismic analysis and discrimination. In summary, the book provides an authoritative treatment of major topics in remote sensing information processing and defines new frontiers for these areas. Contents: Data Mining; SAR Image Processing; Wavelet Analysis and Applications; Military Applications of Remote Sensing; Microwave Remote Sensing; Statistical Pattern Recognition; Automatic Target Segmentation; Neural Networks; Change Detection; Seismic Signal Processing; Time Series Prediction; Image Compression; Emerging Topics. Readership: Engineers and scientists dealing with remote sensing data in particular, and signals and images in general; computer scientists involved in software development on geophysical data analysis.




Frontiers of Computer Vision


Book Description

This book constitutes refereed proceedings of the 26th International Workshop Frontiers of Computer Vision, IW-FCV 2020, held in Ibusuki, Kagoshima, Japan, in February 2020. The 27 full papers presented were thoroughly reviewed and selected from 68 submissions. The papers in the volume are organized according to the following topics: real-world applications; face, pose, and action recognition; object detection and tracking; inspection and diagnosis; camera, 3D and imaging.




Optical Character Recognition


Book Description

Optical character recognition (OCR) is the most prominent and successful example of pattern recognition to date. There are thousands of research papers and dozens of OCR products. Optical Character Rcognition: An Illustrated Guide to the Frontier offers a perspective on the performance of current OCR systems by illustrating and explaining actual OCR errors. The pictures and analysis provide insight into the strengths and weaknesses of current OCR systems, and a road map to future progress. Optical Character Recognition: An Illustrated Guide to the Frontier will pique the interest of users and developers of OCR products and desktop scanners, as well as teachers and students of pattern recognition, artificial intelligence, and information retrieval. The first chapter compares the character recognition abilities of humans and computers. The next four chapters present 280 illustrated examples of recognition errors, in a taxonomy consisting of Imaging Defects, Similar Symbols, Punctuation, and Typography. These examples were drawn from large-scale tests conducted by the authors. The final chapter discusses possible approaches for improving the accuracy of today's systems, and is followed by an annotated bibliography. Optical Character Recognition: An Illustrated Guide to the Frontier is suitable as a secondary text for a graduate level course on pattern recognition, artificial intelligence, and information retrieval, and as a reference for researchers and practitioners in industry.