The Great Transition: Shifting from Fossil Fuels to Solar and Wind Energy


Book Description

The great energy transition from fossil fuels to renewable sources of energy is under way. As oil insecurity deepens, the extraction risks of fossil fuels rise, and concerns about climate instability cast a shadow over the future of coal, a new world energy economy is emerging. The old economy, fueled by oil, natural gas, and coal is being replaced with one powered by wind, solar, and geothermal energy. The Great Transition details the accelerating pace of this global energy revolution. As many countries become less enamored with coal and nuclear power, they are embracing an array of clean, renewable energies. Whereas solar energy projects were once small-scale, largely designed for residential use, energy investors are now building utility-scale solar projects. Strides are being made: some of the huge wind farm complexes under construction in China will each produce as much electricity as several nuclear power plants, and an electrified transport system supplemented by the use of bicycles could reshape the way we think about mobility.




Renewable Energy


Book Description

How do we heat our homes, light our rooms, and power our cars? With energy! In 2014, the United States relied on fossil fuels for about 67 percent of its power. But as the fossil fuel supply dwindles and climate change becomes an increasingly urgent issue, individuals, businesses, and governments are expanding their sources of renewable energy, including solar, wind, biofuel, hydro, and geothermal. In Renewable Energy: Discover the Fuel of the Future, readers ages 9 to 12 learn about these renewable energy sources and discover how sunshine can be used to power light bulbs and how the earth's natural heat can be used to warm our houses. Young readers weigh the pros and cons of different energy sources and make their own informed opinions about which resources are the best choices for different uses. Renewable energy industries provide a booming field for future scientists and engineers. This book shows kids these future jobs and gets them excited about contributing to a world run on clean energy. Hands-on projects, essential questions, links to online primary sources, and science-minded prompts to think more about energy, the environment, and the repercussions of our choices make this book a key addition to classrooms and libraries.




Solar Fuel Generation


Book Description

As the search for renewable sources of energy grows more urgent, more and more attention is focusing on the blueprint offered by biological photosynthesis for translating the energy of our Sun into energy rich molecules like H2 and carbohydrates, commonly known as "solar fuels." These solar fuels have enormous potential to store high densities of energy in the form of chemical bonds as well as being transportable. This book offers a complete overview of the promising approaches to solar fuel generation, including the direct pathways of solar H2 generation and CO2 photocatalytic reduction. Solar Fuel Generation is an invaluable tool for graduate students and researchers (especially chemists, physicists, and material scientists) working in this field.




Photoelectrochemical Solar Fuel Production


Book Description

This book explores the conversion for solar energy into renewable liquid fuels through electrochemical reactions. The first section of the book is devoted to the theoretical fundamentals of solar fuels production, focusing on the surface properties of semiconductor materials in contact with aqueous solutions and the reaction mechanisms. The second section describes a collection of current, relevant characterization techniques, which provide essential information of the band structure of the semiconductors and carrier dynamics at the interface semiconductor. The third, and last section comprises the most recent developments in materials and engineered structures to optimize the performance of solar-to-fuel conversion devices.




Solar Fuels


Book Description

The most important obstacle to solar meeting all our energy needs is that solar energy is not always accessible and therefore cannot be used when needed. Therefore, the conversion of solar energy into chemical energy, which has become more and more important in recent years, is a groundbreaking topic in the field of renewable energy. This type of chemical energy is called solar fuel. Hydrogen, methanol, methane, and carbon monoxide are among the solar fuels, which can be produced via solar-thermal, artificial photosynthesis, photocatalytic or photoelectrochemical routes. The Advances in Solar Cell Materials and Storage series aims to provide information on new and cutting-edge materials, advanced solar cell designs and architecture, and new concepts in photovoltaic conversion and storage. Solar Fuels, which is the third volume of this series, compiles the objectives related to the new semiconductor materials and manufacturing techniques for solar fuel generation. Chapters are written by distinguished authors who have extensive experience in their fields. A multidisciplinary contributor profile including chemical engineering, materials science, environmental engineering, and mechanical and aerospace engineering provides a broader point of view and coverage of the topic. Therefore, readers absolutely will have a chance to learn about not only the fundamentals but also the various aspects of the materials science and manufacturing technologies for solar fuel production. Moreover, readers from diverse fields will definitely take advantage of this book to comprehend the impacts of solar energy conversion in chemical form.




Molecular Solar Fuels


Book Description

Written by experts, this book presents the latest knowledge and chemical prospects in developing hydrogen as a solar fuel.




Solar Hydrogen


Book Description

With reference to many examples as well as to new technologies, written by experts in the field, this accessible book provides insight into a crucial technology and numerous color pictures contribute to the book's readability.




Managing Global Warming


Book Description

Managing Global Warming: An Interface of Technology and Human Issues discusses the causes of global warming, the options available to solve global warming problems, and how each option can be realistically implemented. It is the first book based on scientific content that presents an overall reference on both global warming and its solutions in one volume. Containing authoritative chapters written by scientists and engineers working in the field, each chapter includes the very latest research and references on the potential impact of wind, solar, hydro, geo-engineering and other energy technologies on climate change. With this wide ranging set of topics and solutions, engineers, professors, leaders and policymakers will find this to be a valuable handbook for their research and work. Presents chapters that are accompanied by an easy reference summary Includes up-to-date options and technical solutions for global warming through color imagery Provides up-to-date information as presented by a collection of renowned global experts




Solar Fuels


Book Description

Written for use as a text and reference for those interested in how new materials may be used to capture, store, and use solar energy for alternative energy resources in everyday life, Solar Fuels: Materials, Physics, and Applications discusses the fundamentals of new materials and the physical processes involved in their mechanisms and design. This book offers clear examples of current state-of-the-art organic and inorganic solar cell materials and devices used in the field, and includes experiments testing solar capability along with standardized examples. Last, but not least, it also gives a clear outline of the challenges that need to be addressed moving forward.




Solar Power And Fuels


Book Description

Solar Power and Fuels presents the proceedings of the First International Conference on the Photochemical Conversion and Storage of Solar Energy, held at the University of Western Ontario on August 24–28, 1976. This book explores the various possibilities for the photochemical conversion and storage of solar energy. Organized into eight chapters, this compilation of papers begins with an overview of the chemical utilization of solar energy through systems in which the quanta of radiation from the sun are utilized in atomic or molecular systems that undergo chemical changes. This text then examines the various ways in which biological/solar systems could be realized to varying degrees over the short and long term. Other chapters consider the electron-transfer processes in which excited states of molecules react with molecules. This book discusses as well the systems where the photochemical reaction occurs in the electrolyte. The final chapter deals with the intermittent availability of solar radiation. This book is a valuable resource for photochemists, photobiologists, and scientists.