Function Classes on the Unit Disc


Book Description

This revised and extended edition of a well-established monograph in function theory contains a study on various function classes on the disc, a number of new results and new or easy proofs of old but interesting theorems (for example, the Fefferman–Stein theorem on subharmonic behavior or the theorem on conjugate functions in Bergman spaces) and a full discussion on g-functions.




Function Classes on the Unit Disc


Book Description

This monograph contains a study on various function classes, a number of new results and new or easy proofs of old results (Fefferman-Stein theorem on subharmonic behavior, theorems on conjugate functions and fractional integration on Bergman spaces, Fefferman's duality theorem), which are interesting for specialists; applications of the Hardy-Littlewood inequalities on Taylor coefficients to (C, α)-maximal theorems and (C, α)-convergence; a study of BMOA, due to Knese, based only on Green's formula; the problem of membership of singular inner functions in Besov and Hardy-Sobolev spaces; a full discussion of g-function (all p > 0) and Calderón's area theorem; a new proof, due to Astala and Koskela, of the Littlewood-Paley inequality for univalent functions; and new results and proofs on Lipschitz spaces, coefficient multipliers and duality, including compact multipliers and multipliers on spaces with non-normal weights. It also contains a discussion of analytic functions and lacunary series with values in quasi-Banach spaces with applications to function spaces and composition operators. Sixteen open questions are posed. The reader is assumed to have a good foundation in Lebesgue integration, complex analysis, functional analysis, and Fourier series. Further information can be found at the author's website at http://poincare.matf.bg.ac.rs/~pavlovic.




Function Classes on the Unit Disc


Book Description

The monograph contains a study on various function classes, a number of new results and new or easy proofs of old result (Fefferman-Stein theorem on subharmonic behavior, theorem on conjugate functions on Bergman spaces), which might be interesting for specialists, a full discussion on g-function (all p> 0), and a treatment of lacunary series with values in quasi-Banach spaces.




Toeplitz Operators and Spectral Function Theory


Book Description

The volume contains selected papers of the Spectral Function Theory seminar, Leningrad Branch of Steklov Mathematical Institute. The papers are mostly devoted to the theory of Toeplitz and model operators. These subjects are considered here from various points of view. Several papers concern the relationships of Toeplitz operators to weighted polynomial approximation. Namely, two papers by B. Solomyak and A. Volberg intensively treat the problem of spectra! multiplicity f~r analytic Toeplitz operators (which are, in fact, multiplication operators) and my paper can serve as an introduction to the problem. This theme of multiplicities is continued in a paper by V. Vasyunin where the multiplicity of the spectrum is computed for Hilbert space contractions with finite defect indices. V. Peller's paper deals with a perturbation theory problem for Toeplitz operators. In a paper by D. Yakubovich a new similarity model for a class of Toeplitz operators is constructed. S. Treil' presents a survey of a part of spectral function theory for vector valued function (Szego-Kolmogorov extreme prob!ems for operator weights, bases of vector rational functions, estimations of Hilbert transform with respect to operator weights, the operator corona problem). As a concluding remark I dare only note that the whole collection convinces us once more without a doubt of the fruitfullness of the natural union of operator theory and complex analysis (if at all the union of these fields is at all different from their intersection).







Mathematical Analysis I: Approximation Theory


Book Description

This book collects original research papers and survey articles presented at the International Conference on Recent Advances in Pure and Applied Mathematics (ICRAPAM), held at Delhi Technological University, India, on 23–25 October 2018. Divided into two volumes, it discusses major topics in mathematical analysis and its applications, and demonstrates the versatility and inherent beauty of analysis. It also shows the use of analytical techniques to solve problems and, wherever possible, derive their numerical solutions. This volume addresses major topics, such as operator theory, approximation theory, fixed-point theory, holomorphic functions, summability theory, and analytic functions. It is a valuable resource for students as well as researchers in mathematical sciences.




Blaschke Products and Their Applications


Book Description

​Blaschke Products and Their Applications presents a collection of survey articles that examine Blaschke products and several of its applications to fields such as approximation theory, differential equations, dynamical systems, harmonic analysis, to name a few. Additionally, this volume illustrates the historical roots of Blaschke products and highlights key research on this topic. For nearly a century, Blaschke products have been researched. Their boundary behaviour, the asymptomatic growth of various integral means and their derivatives, their applications within several branches of mathematics, and their membership in different function spaces and their dynamics, are a few examples of where Blaschke products have shown to be important. The contributions written by experts from various fields of mathematical research will engage graduate students and researches alike, bringing the reader to the forefront of research in the topic. The readers will also discover the various open problems, enabling them to better pursue their own research.




Mathematical, Computational Intelligence and Engineering Approaches for Tourism, Agriculture and Healthcare


Book Description

This book is a collection of selected papers presented at the 17th FAI International Conference on Engineering, Mathematical and Computational Intelligence (ICEMCI 2019), held at Jabalpur Engineering College, India, from 21–23 December 2019. This book discusses mathematical, computational intelligence and engineering approaches for tourism, agriculture and health care. It is a unique combination of a wide spectrum of topics, such as tourism destination ranking, medical diagnosis-based intelligent systems, drivers for hotel objectives, irrigation systems and more, which are discussed by using fuzzy, statistical and neural network tools. This book will be valuable to faculty members, postgraduate students, research scholars as well as readers from the industrial sector.




Current Topics in Analytic Function Theory


Book Description

This volume is a collection of research-and-survey articles by eminent and active workers around the world on the various areas of current research in the theory of analytic functions.Many of these articles emerged essentially from the proceedings of, and various deliberations at, three recent conferences in Japan and Korea: An International Seminar on Current Topics in Univalent Functions and Their Applications which was held in August 1990, in conjunction with the International Congress of Mathematicians at Kyoto, at Kinki University in Osaka; An International Seminar on Univalent Functions, Fractional Calculus, and Their Applications which was held in October 1990 at Fukuoka University; and also the Japan-Korea Symposium on Univalent Functions which was held in January 1991 at Gyeongsang National University in Chinju.




Theory of Sensitivity in Dynamic Systems


Book Description

This book provides a comprehensive treatment of the development and present state of the theory of sensitivity of dynamic systems. It is intended as a textbook and reference for researchers and scientists in electrical engineering, control and information theory as well as for mathematicians. The extensive and structured bibliography provides an overview of the literature in the field and points out directions for further research.