Functional-analytic and Complex Methods, Their Interactions, and Applications to Partial Differential Equations


Book Description

Functional analysis is not only a tool for unifying mathematical analysis, but it also provides the background for today''s rapid development of the theory of partial differential equations. Using concepts of functional analysis, the field of complex analysis has developed methods (such as the theory of generalized analytic functions) for solving very general classes of partial differential equations. This book is aimed at promoting further interactions of functional analysis, partial differential equations, and complex analysis including its generalizations such as Clifford analysis. New interesting problems in the field of partial differential equations concern, for instance, the Dirichlet problem for hyperbolic equations. Applications to mathematical physics address mainly Maxwell''s equations, crystal optics, dynamical problems for cusped bars, and conservation laws. Sample Chapter(s). Hyperbolic Equations, Waves and the Singularity Theory (858 KB). Contents: Boundary Value Problems and Initial Value Problems for Partial Differential Equations; Applications of Functional-Analytic and Complex Methods to Mathematical Physics; Partial Complex Differential Equations in the Plane; Complex Methods in Higher Dimensions. Readership: Researchers, lecturers and graduate students in the fields of analysis & differential equations, applied mathematics and mathematical physics.




Functional-analytic and Complex Methods, Their Interactions, and Applications to Partial Differential Equations


Book Description

Functional analysis is not only a tool for unifying mathematical analysis, but it also provides the background for today's rapid development of the theory of partial differential equations. Using concepts of functional analysis, the field of complex analysis has developed methods (such as the theory of generalized analytic functions) for solving very general classes of partial differential equations.This book is aimed at promoting further interactions of functional analysis, partial differential equations, and complex analysis including its generalizations such as Clifford analysis. New interesting problems in the field of partial differential equations concern, for instance, the Dirichlet problem for hyperbolic equations. Applications to mathematical physics address mainly Maxwell's equations, crystal optics, dynamical problems for cusped bars, and conservation laws.




Functional-analytic And Complex Methods, Their Interactions, And Applications To Partial Differential Equations - Proceedings Of The International Graz Workshop


Book Description

Functional analysis is not only a tool for unifying mathematical analysis, but it also provides the background for today's rapid development of the theory of partial differential equations. Using concepts of functional analysis, the field of complex analysis has developed methods (such as the theory of generalized analytic functions) for solving very general classes of partial differential equations.This book is aimed at promoting further interactions of functional analysis, partial differential equations, and complex analysis including its generalizations such as Clifford analysis. New interesting problems in the field of partial differential equations concern, for instance, the Dirichlet problem for hyperbolic equations. Applications to mathematical physics address mainly Maxwell's equations, crystal optics, dynamical problems for cusped bars, and conservation laws. remove /a remove




Finite or Infinite Dimensional Complex Analysis and Applications


Book Description

There is almost no field in Mathematics which does not use Mathe matical Analysis. Computer methods in Applied Mathematics, too, are often based on statements and procedures of Mathematical Analysis. An important part of Mathematical Analysis is Complex Analysis because it has many applications in various branches of Mathematics. Since the field of Complex Analysis and its applications is a focal point in the Vietnamese research programme, the Hanoi University of Technology organized an International Conference on Finite or Infinite Dimensional Complex Analysis and Applications which took place in Hanoi from August 8 - 12, 2001. This conference th was the 9 one in a series of conferences which take place alternately in China, Japan, Korea and Vietnam each year. The first one took place th at Pusan University in Korea in 1993. The preceding 8 conference was th held in Shandong in China in August 2000. The 9 conference of the was the first one which took place above mentioned series of conferences in Vietnam. Present trends in Complex Analysis reflected in the present volume are mainly concentrated in the following four research directions: 1 Value distribution theory (including meromorphic funtions, mero morphic mappings, as well as p-adic functions over fields of finite or zero characteristic) and its applications, 2 Holomorphic functions in several (finitely or infinitely many) com plex variables, 3 Clifford Analysis, i.e., complex methods in higher-dimensional real Euclidian spaces, 4 Generalized analytic functions.




Complex Analysis and Dynamical Systems


Book Description

This book contains contributions from the participants of an International Conference on Complex Analysis and Dynamical Systems. The papers collected here are devoted to various topics in complex analysis and dynamical systems, ranging from properties of holomorphic mappings to attractors in hyperbolic spaces. Overall, these selections provide an overview of activity in analysis at the outset of the twenty-first century. The book is suitable for graduate students and researchers in complex analysis and related problems of dynamics. With this volume, the Israel Mathematical Conference Proceedings are now published as a subseries of the AMS Contemporary Mathematics series.




Functional Analytic Methods In Complex Analysis And Applications To Partial Differential Equations


Book Description

These proceedings concentrate on recent results in the following fields of complex analysis: complex methods for solving boundary value problems with piecewise smooth boundary data, complex methods for linear and nonlinear differential equations and systems of second order, and applications of scales of Banach spaces to initial value problems.Some problems in higher dimensions (such as the unification of global and local existence theorems for holomorphic functions and an elementary approach to Clifford analysis) are also discussed.Particular emphasis is placed on Symbolic Computation in Complex Analysis and on the new approaches to teach mathematical analysis based on interactions between complex analysis and partial differential equations.




Hypercomplex Analysis


Book Description

Contains selected papers from the ISAAC conference 2007 and invited contributions. This book covers various topics that represent the main streams of research in hypercomplex analysis as well as the expository articles. It is suitable for researchers and postgraduate students in various areas of mathematical analysis.




Abstract And Applied Analysis - Proceedings Of The International Conference


Book Description

This volume takes up various topics in Mathematical Analysis including boundary and initial value problems for Partial Differential Equations and Functional Analytic methods.Topics include linear elliptic systems for composite material — the coefficients may jump from domain to domain; Stochastic Analysis — many applied problems involve evolution equations with random terms, leading to the use of stochastic analysis.The proceedings have been selected for coverage in:• Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)• CC Proceedings — Engineering & Physical Sciences




Abstract and Applied Analysis


Book Description

This volume takes up various topics in Mathematical Analysis including boundary and initial value problems for Partial Differential Equations and Functional Analytic methods. Topics include linear elliptic systems for composite material OCo the coefficients may jump from domain to domain; Stochastic Analysis OCo many applied problems involve evolution equations with random terms, leading to the use of stochastic analysis. The proceedings have been selected for coverage in: . OCo Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings). OCo CC Proceedings OCo Engineering & Physical Sciences. Contents: Deterministic Analysis: Differentiation of Hypergeometric Functions with Respect to Parameters (Yu A Brychkov & K O Geddes); On the Lagrange Problem About the Strongest Columns (Yu V Egorov); Wavelet Based Fast Solution of Boundary Integral Equations (H Harbrecht & R Schneider); Semi-Classical Methods in GinzburgOCoLandau Theory (B Helffer); Stability of Equilibriums in One-Dimensional Motion of Compressible Viscous Gas Forced by Self-Gravity (Y Iwata & Y Yamamoto); Estimates for Elliptic Systems for Composite Material (L Nirenberg); On Asymptotics for the Mabuchi Energy Functional (D H Phong & J Sturm); Regularity of Solutions of the Initial Boundary Value Problem for Linearized Equations of Ideal Magneto-Hydrodynamics (M Yamamoto); Stochastic Analysis: Impulsive Stochastic Evolution Inclusions with Multi-Valued Diffusion (N U Ahmed); Some of Future Directions of White Noise Analysis (T Hida); Constructing Random Probability Distributions (T P Hill & D E R Sitton); Multiparameter Additive Processes of Mixture Type (K Inoue); The Random Integral Representation Hypothesis Revisited: New Classes of S-Selfdecomposable Laws (Z J Jurek); Semigroups and Processes with Parameter in a Cone (J Pedersen & K-I Sato); and other papers. Readership: Researchers and academics in the fields of analysis and differential equations, approximation theory, probability and statistics."




Analysis and Applications - ISAAC 2001


Book Description

This collection of survey articles gives and idea of new methods and results in real and complex analysis and its applications. Besides several chapters on hyperbolic equations and systems and complex analysis, potential theory, dynamical systems and harmonic analysis are also included. Newly developed subjects from power geometry, homogenization, partial differential equations in graph structures are presented and a decomposition of the Hilbert space and Hamiltonian are given. Audience: Advanced students and scientists interested in new methods and results in analysis and applications.