Functional and Ecological Xylem Anatomy


Book Description

The book will describe the xylem structure of different plant groups, and will put the findings in a physiological and ecological context. For instance, when differences in vessel diameter are featured, then there will be an explanation why this matters for water transport efficiency and safety from cavitation. The focus is on the hydraulic function of xylem, although mechanical support and storage will also be covered. Featured plant groups include ferns (which only have primary xylem), conifers (tracheid-based xylem), lianas (extremely wide and long vessels), drought-adapted shrubs as well as the model systems poplar and grapevine. The book chapters will draw on the expertise and cutting edge research of a diversified group of internationally known researchers working in different anatomical and physiological sub-disciplines. Over the last two decades, much progress has been made in understanding how xylem structure relates to plant function. Implications for other timely topics such as drought-induced forest dieback or the regulation of plant biomass production will be discussed.




Functional and Ecological Xylem Anatomy


Book Description

This book analyzes what is currently known about functional and ecological xylem anatomy. In addition to serving as a source of information to professionals, instructors, and advanced students in plant science and forestry, the inherent beauty of xylem that is apparent in many images will be a source of inspiration to readers who are not yet familiar with the topic. This work offers a unique combination of scientific insight based on thorough experimental work and beautiful images, which often speak for themselves. The beauty of xylem is evident at different scales; from views of striking tree ring patterns and vascular networks in fern fronds, conifer needles, and angiosperm leaves, to microscopic images of developing pits. Functional and Ecological Xylem Anatomy not only serves as a source of information, but also of inspiration.




Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L.


Book Description

With more than 500 species distributed all around the Northern Hemisphere, the genus Quercus L. is a dominant element of a wide variety of habitats including temperate, tropical, subtropical and mediterranean forests and woodlands. As the fossil record reflects, oaks were usual from the Oligocene onwards, showing the high ability of the genus to colonize new and different habitats. Such diversity and ecological amplitude makes genus Quercus an excellent framework for comparative ecophysiological studies, allowing the analysis of many mechanisms that are found in different oaks at different level (leaf or stem). The combination of several morphological and physiological attributes defines the existence of different functional types within the genus, which are characteristic of specific phytoclimates. From a landscape perspective, oak forests and woodlands are threatened by many factors that can compromise their future: a limited regeneration, massive decline processes, mostly triggered by adverse climatic events or the competence with other broad-leaved trees and conifer species. The knowledge of all these facts can allow for a better management of the oak forests in the future.




Vascular Transport in Plants


Book Description

Vascular Transport in Plants provides an up-to-date synthesis of new research on the biology of long distance transport processes in plants. It is a valuable resource and reference for researchers and graduate level students in physiology, molecular biology, physiology, ecology, ecological physiology, development, and all applied disciplines related to agriculture, horticulture, forestry and biotechnology. The book considers long-distance transport from the perspective of molecular level processes to whole plant function, allowing readers to integrate information relating to vascular transport across multiple scales. The book is unique in presenting xylem and phloem transport processes in plants together in a comparative style that emphasizes the important interactions between these two parallel transport systems. - Includes 105 exceptional figures - Discusses xylem and phloem transport in a single volume, highlighting their interactions - Syntheses of structure, function and biology of vascular transport by leading authorities - Poses unsolved questions and stimulates future research - Provides a new conceptual framework for vascular function in plants




Xylem Structure and the Ascent of Sap


Book Description

The first edition of this book was the first to provide an integrated description of sap ascension from an anatomical and functional point of view. The second edition opens with the three-dimensional aspects of wood anatomy. The cohesion-tension theory and new evidence are introduced in response to recent controversies over the mechanism of sap ascent in plants. The physiology, anatomy and biophysics of xylem dysfunction are discussed and new insights into hydraulic architecture are reviewed with special emphasis on physiological limits on maximum transpiration and how hydraulic architecture limits gas exchange, carbon gain and growth of plants. The text concludes with a description of xylem failure and pathology. The book highlights fascinating areas of current research with the aim to stimulate more work in the future.




The Evolution of Plant Physiology


Book Description

Coupled with biomechanical data, organic geochemistry and cladistic analyses utilizing abundant genetic data, scientific studies are revealing new facets of how plants have evolved over time. This collection of papers examines these early stages of plant physiology evolution by describing the initial physiological adaptations necessary for survival as upright structures in a dry, terrestrial environment. The Evolution of Plant Physiology also encompasses physiology in its broadest sense to include biochemistry, histology, mechanics, development, growth, reproduction and with an emphasis on the interplay between physiology, development and plant evolution. - Contributions from leading neo- and palaeo-botanists from the Linnean Society - Focus on how evolution shaped photosynthesis, respiration, reproduction and metabolism. - Coverage of the effects of specific evolutionary forces -- variations in water and nutrient availability, grazing pressure, and other environmental variables




Functional Biology of Plants


Book Description

Functional Biology of Plants provides students and researchers with a clearly written, well structured whole plant physiology text. Early in the text, it provides essential information on molecular and cellular processes so that the reader can understand how they are integrated into the development and function of the plant at whole-plant level. Thus, this beautifully illustrated book, presents a modern, applied integration of whole plant and molecular approaches to the study of plants. It is divided into four parts: Part 1: Genes and Cells, looks at the origins of plants, cell structure, biochemical processes and genes and development. Part 2: The Functioning Plant, describes the structure and function of roots, stems, leaves, flowers and seed and fruit development. Part 3: Interactions and Adaptations, examines environmental and biotic stresses and how plants adapt and acclimatise to these conditions. Part 4: Future Directions, illustrates the great importance of plant research by looking at some well chosen, topical examples such as GM crops, biomass and bio-fuels, loss of plant biodiversity and the question of how to feed the planet. Throughout the book there are text boxes to illustrate particular aspects of how humans make use of plants, and a comprehensive glossary proves invaluable to those coming to the subject from other areas of life science.




Physicochemical and Environmental Plant Physiology


Book Description

"Physiology," which is the study of the function of cells, organs, and organisms, derives from the Latin physiologia, which in turn comes from the Greek physi- or physio-, a prefix meaning natural, and logos, meaning reason or thought. Thus physiology suggests natural science and is now a branch of biology dealing with processes and activities that are characteristic of living things. "Physicochemical" relates to physical and chemical properties, and "Environmental" refers to topics such as solar irradiation and wind. "Plant" indicates the main focus of this book, but the approach, equations developed, and appendices apply equalIy welI to animaIs and other organisms. We wilI specificalIy consider water relations, solute transport, photosynthesis, transpiration, respiration, and environmental interactions. A physiologist endeavors to understand such topics in physical and chemical terms; accurate models can then be constructed and responses to the internal and the external environment can be predicted. Elementary chemistry, physics, and mathematics are used to develop concepts that are key to under-standing biology -the intent is to provide a rigorous development, not a compendium of facts. References provide further details, although in some cases the enunciated principIes carry the reader to the forefront of current research. Calculations are used to indicate the physiological consequences of the various equations, and problems at the end of chapters provide further such exercises. Solutions to alI of the problems are provided, and the appendixes have a large tist of values for constants and conversion factors at various temperatures.




Transport in Plants I


Book Description

When WILHELM RUHLAND developed his plan for an Encyclopedia of Plant Physiol ogy more than three decades ago, biology could still be conveniently subdivided into classical areas. Even within plant physiology, subdivisions were not too difficult to make, and general principles could be covered sufficiently in the two introductory volumes of the Encyclopedia on the physical and chemical basis of cell biology. But the situation changed rapidly even during the 12-year publication period of the Encyclopedia (1955-1967). The new molecular direction of genetics and structural research on biopolymers had an integrating effect on all other biological fields, including plant physiology, and it became increasingly difficult to keep previously distinct areas separated. RUHLAND'S overall plan included 18 volumes and about 22,000 pages. It covered the entire field of plant physiology, in most cases from the very beginning. But, as each volume appeared, it was clear that its content would soon be outdated.




Climate Change, Ecology and Systematics


Book Description

Climate change has shaped life in the past and will continue to do so in the future. Understanding the interactions between climate and biodiversity is a complex challenge to science. With contributions from 60 key researchers, this book examines the ongoing impact of climate change on the ecology and diversity of life on earth. It discusses the latest research within the fields of ecology and systematics, highlighting the increasing integration of their approaches and methods. Topics covered include the influence of climate change on evolutionary and ecological processes such as adaptation, migration, speciation and extinction, and the role of these processes in determining the diversity and biogeographic distribution of species and their populations. This book ultimately illustrates the necessity for global conservation actions to mitigate the effects of climate change in a world that is already undergoing a biodiversity crisis of unprecedented scale.