Functionalized Fullerenes


Book Description




Fullerenes: From Synthesis to Optoelectronic Properties


Book Description

Fullerenes: From Synthesis to Optoelectronic Properties covers a host of topics in organic synthesis, photo- / radiation-chemistry, electron donor-acceptor interaction, supramolecular chemistry, and photovoltaics. The book reviews the state-of-the-art discoveries in these areas of "Fullerene Research" and presents selected examples to prove the potential of fullerenes as multifunctional moieties in well-ordered multicomponent composites. Fullerenes: From Synthesis to Optoelectronic Properties appeals to upper-level undergraduates, graduates, researchers, and professionals in the fields of condensed matter physicists; materials scientists; electrochemists; biochemists; solid-state, physical, organic, inorganic, and theoretical chemists; chemical, electrical, and optical engineers.




Fullerenes


Book Description

Fullerene, molekulare "Fu?balle" aus 60 oder mehr Kohlenstoffatomen, sind eine Substanzklasse mit vielversprechenden Zukunftsaussichten, beispielsweise als Halbleiter, als Basis pharmazeutischer Wirkstoffe oder Polymerwerkstoffe. Dieses Buch bietet Ihnen einen aktuellen Uberblick uber das dynamische Forschungsgebiet. Zur Sprache kommen modernste Themen wie Metallofullerene, Nanorohren und organisch funktionalisierte Fullerenverbindungen. (06/00)







C-H Bond Activation and Catalytic Functionalization I


Book Description

The series Topics in Organometallic Chemistry presents critical overviews of research results in organometallic chemistry. As our understanding of organometallic structure, properties and mechanisms increases, new ways are opened for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as organic synthesis, medical research, biology and materials science. Thus the scope of coverage includes a broad range of topics of pure and applied organometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. The individual volumes of Topics in Organometallic Chemistry are thematic. Review articles are generally invited by the volume editors. All chapters from Topics in Organometallic Chemistry are published OnlineFirst with an individual DOI. In references, Topics in Organometallic Chemistry is abbreviated as Top Organomet Chem and cited as a journal.




Antimocrobial Photodynamic Inactivation and Antitumor Photodynamic Therapy with Fullerenes


Book Description

This book provides detailed and current information on using fullerenes (bucky-balls) in photodynamic therapy (PDT), one of the most actively studied applications of photonic science in healthcare. This will serve as a useful source for researchers working in photomedicine and nanomedicine, especially those who are investigating PDT for cancer treatment and infectious disease treatment. The book runs the gamut from an introduction to the history and chemistry of fullerenes and some basic photochemistry, to the application of fullerenes as photosensitizers for cancer and antimicrobial inactivation.




Fullerene Research Advances


Book Description

Until 1985, the chemical element Carbon was only known to exist in two forms -- diamond and graphite. This changed when Kroto and co-workers discovered an entirely new form of carbon, which became known as C60 or the fullerene molecule. (This discovery later led to their award of the 1996 Nobel Prize in Chemistry.) The original discovery of C60 was in the soot produced from the laser ablation of graphite. Since then, other methods of production have been developed. It is also thought that isolated C60 molecules may be found in stars and interstellar media. It was soon discovered that C60 is not the only ball-like carbon molecule possible (although it is the most stable and the most dominant). The rugby-ball shaped C70 molecule is another possibility. In nanotechnology, the potential applications of carbon nanotubes (formed by combining hexagonal rings of carbon atoms only, rather than hexagons and pentagons as in C60) for very small electronic devices are currently the subject of much activity. This book presents the latest research in this dynamic field.




Carbon Nanotubes and Related Structures


Book Description

Written by the most prominent experts and pioneers in the field, this ready reference combines fundamental research, recent breakthroughs and real-life applications in one well-organized treatise. As such, both newcomers and established researchers will find here a wide range of current methods for producing and characterizing carbon nanotubes using imaging as well as spectroscopic techniques. One major part of this thorough overview is devoted to the controlled chemical functionalization of carbon nanotubes, covering intriguing applications in photovoltaics, organic electronics and materials design. The latest research on novel carbon-derived structures, such as graphene, nanoonions and carbon pea pods, round off the book.




Carbon Nanomaterials


Book Description

First Self-Contained Source Entirely Dedicated to Nanocarbons Carbon nanotubes (CNTs) attract a good deal of attention for their electronic, mechanical, optical, and chemical characteristics. But nanostructured carbons are not limited to nanotubes and fullerenes-they also exist as nano-diamonds, fibers, cones, scrolls, whiskers, and grap




Nanomaterials Handbook


Book Description

Even before it was identified as a science and given a name, nanotechnology was the province of the most innovative inventors. In medieval times, craftsmen, ingeniously employing nanometer-sized gold particles, created the enchanting red hues found in the gold ruby glass of cathedral windows. Today, nanomaterials are being just as creatively used to improve old products, as well as usher in new ones. From tires to CRTs to sunscreens, nanomaterials are becoming a part of every industry. The Nanomaterials Handbook provides a comprehensive overview of the current state of nanomaterials. Employing terminology familiar to materials scientists and engineers, it provides an introduction that delves into the unique nature of nanomaterials. Looking at the quantum effects that come into play and other characteristics realized at the nano level, it explains how the properties displayed by nanomaterials can differ from those displayed by single crystals and conventional microstructured, monolithic, or composite materials. The introduction is followed by an in-depth investigation of carbon-based nanomaterials, which are as important to nanotechnology as silicon is to electronics. However, it goes beyond the usual discussion of nanotubes and nanofibers to consider graphite whiskers, cones and polyhedral crystals, and nanocrystalline diamonds. It also provides significant new information with regard to nanostructured semiconductors, ceramics, metals, biomaterials, and polymers, as well as nanotechnology’s application in drug delivery systems, bioimplants, and field-emission displays. The Nanomaterials Handbook is edited by world-renowned nanomaterials scientist Yury Gogotsi, who has recruited his fellow-pioneers from academia, national laboratories, and industry, to provide coverage of the latest material developments in America, Asia, Europe, and Australia.