Fundamentals of MALDI-ToF-MS Analysis


Book Description

This book presents the fundamentals and applications of Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-ToF-MS) technique. It highlights the basic principles, the history of invention as well as the mechanism of ionization and mass determination using this technique. It describes the fundamental principles and methods for MALDI spectra interpretation and determination of exact chemical structures from experimental data. This book guides the reader through the interpretation of MALDI data where complex macromolecular spectra are simplified in order to present the major principles behind data interpretation. In addition, each chapter describes how MALDI-ToF-MS analysis provides necessary understanding of the copolymer systems that have been designed for specialized biomedical applications.




The Use of Mass Spectrometry Technology (MALDI-TOF) in Clinical Microbiology


Book Description

The Use of Mass Spectrometry Technology (MALDI-TOF) in Clinical Microbiology presents the state-of the-art for MALDI-TOF mass spectrometry. It is a key reference defining how MALDI-TOF mass spectrometry is used in clinical settings as a diagnostic tool of microbial identification and characterization that is based on the detection of a mass of molecules. The book provides updated applications of MALDI-TOF techniques in clinical microbiology, presenting the latest information available on a technology that is now used for rapid microbial identification at relatively low cost, thus offering an alternative to conventional laboratory diagnosis and proteomic identification systems. Although the main use of the technology has, until now, been identification or typing of bacteria from a positive culture, applications in the field of virology, mycology, microbacteriology and resistances are opening up new opportunities. - Presents updated applications of MALDI-TOF techniques in clinical microbiology - Describes the use of mass spectrometry in the lab, the principles of the technology, preparation of samples, device calibration and maintenance, treatment of microorganisms, and quality control - Presents key information for researchers, including possible uses of the technology, differences between devices, how to interpret results, and future applications - Covers the topic in a systematic and comprehensive manner that is useful to both clinicians and researchers




Advances in MALDI and Laser-Induced Soft Ionization Mass Spectrometry


Book Description

This book covers the state-of-the-art of modern MALDI (matrix-assisted laser desorption/ionization) and its applications. New applications and improvements in the MALDI field such as biotyping, clinical diagnosis, forensic imaging, and ESI-like ion production are covered in detail. Additional topics include MS imaging, biotyping/speciation and large-scale, high-speed MS sample profiling, new methods based on MALDI or MALDI-like sample preparations, and the advantages of ESI to MALDI MS analysis. This is an ideal book for graduate students and researchers in the field of bioanalytical sciences. This book also: • Showcases new techniques and applications in MALDI MS • Demonstrates how MALDI is preferable to ESI (electrospray ionization) • Illustrates the pros and cons associated with biomarker discovery studies in clinical proteomics and the various application areas, such as cancer proteomics







Mass Spectrometry in the Biological Sciences: A Tutorial


Book Description

The developments in mass spectrometry over the past fifteen years have been impressive in their implications in bioanalytical chemistry. The achievements begin with the inventions of Cf-252 Plasma Desorption Mass Spectrometry by Macfarlane and Fourier Transform Mass Spectrometry by Comisarow and Marshall in the mid 1970s. The former showed the feasibility of producing large gas-phase ions from large biomolecules whereas the latter enhanced the capabilities for ion trapping especially in analytical mass spectrometry. A major achievement was the development by Barber of Fast Atom Bombardment (FAB) mass spectrometry, an advance that heralded a new era in biological mass spectrometry. Contemporary and routine instruments such as magnetic sectors and quadrupoles were rapidly adapted to F AB, and nearly the entire universe of small molecules became amenable to study by mass spectrometry. The introduction of FAB also paved the way for improvement of instrument capability. For example, the upper mass limit of magnet sector mass spectrometers was increased by nearly an order of magnitude by the instrument manufacturers. Furthermore, the technique of tandem mass spectrometry (MS/MS) was given new meaning because important structural information for biomolecules could now be produced for ions introduced by FAB into the tandem instrument. The evolution of MS/MS continues today with the development of ion traps, time-of-flight, and sector instruments equipped with array detection.




Applications of Mass Spectrometry in Microbiology


Book Description

In the last quarter century, advances in mass spectrometry (MS) have been at the forefront of efforts to map complex biological systems including the human metabolome, proteome, and microbiome. All of these developments have allowed MS to become a well-established molecular level technology for microorganism characterization. MS has demonstrated its considerable advantage as a rapid, accurate, and cost-effective method for microorganism identification, compared to conventional phenotypic techniques. In the last several years, applications of MS for microorganism characterization in research, clinical microbiology, counter-bioterrorism, food safety, and environmental monitoring have been documented in thousands of publications. Regulatory bodies in Europe, the US, and elsewhere have approved MS-based assays for infectious disease diagnostics. As of mid-2015, more than 3300 commercial MS systems for microorganism identification have been deployed worldwide in hospitals and clinical labs. While previous work has covered broader approaches in using MS to characterize microorganisms at the species level or above, this book focuses on strain-level and subtyping applications. In twelve individual chapters, innovators, leaders and practitioners in the field from around the world have contributed to a comprehensive overview of current and next-generation approaches for MS-based microbial characterization at the subspecies and strain levels. Chapters include up-to-date reference lists as well as web-links to databases, recommended software, and other useful tools. The emergence of new, antibiotic-resistant strains of human or animal pathogens is of extraordinary concern not only to the scientific and medical communities, but to the general public as well. Developments of novel MS-based assays for rapid identification of strains of antibiotic-resistant microorganisms are reviewed in the book as well. Microbiologists, bioanalytical scientists, infectious disease specialists, clinical laboratory and public health practitioners as well as researchers in universities, hospitals, government labs, and the pharmaceutical and biotechnology industries will find this book to be a timely and valuable resource.