Fundamentals of Automatic Process Control


Book Description

Strong theoretical and practical knowledge of process control is essential for plant practicing engineers and operators. In addition being able to use control hardware and software appropriately, engineers must be able to select or write computer programs that interface the hardware and software required to run a plant effectively. Designed to help readers understand control software and strategies that mimic human activities, Fundamentals of Automatic Process Control provides an integrated introduction to the hardware and software of automatic control systems. Featured Topics Basic instruments, control systems, and symbolic representations Laplacian mathematics for applications in control systems Various disturbances and their effects on uncontrolled processes Feedback control loops and traditional PID controllers Laplacian analysis of control loops Tuning methods for PID controllers Advanced control systems Virtual laboratory software (included on downloadable resources) Modern plants require operators and engineers to have thorough knowledge of instrumentation hardware as well as good operating skills. This book explores the theoretical analysis of the process dynamics and control via a large number of problems and solutions spread throughout the text. This balanced presentation, coupled with coverage of traditional and advanced systems provides an understanding of industrial realities that prepares readers for the future evolution of industrial operations.




Fundamentals of Automatic Process Control


Book Description

Strong theoretical and practical knowledge of process control is essential for plant practicing engineers and operators. In addition being able to use control hardware and software appropriately, engineers must be able to select or write computer programs that interface the hardware and software required to run a plant effectively. Designed to help readers understand control software and strategies that mimic human activities, Fundamentals of Automatic Process Control provides an integrated introduction to the hardware and software of automatic control systems. Featured Topics Basic instruments, control systems, and symbolic representations Laplacian mathematics for applications in control systems Various disturbances and their effects on uncontrolled processes Feedback control loops and traditional PID controllers Laplacian analysis of control loops Tuning methods for PID controllers Advanced control systems Virtual laboratory software (included on CD-ROM) Modern plants require operators and engineers to have thorough knowledge of instrumentation hardware as well as good operating skills. This book explores the theoretical analysis of the process dynamics and control via a large number of problems and solutions spread throughout the text. This balanced presentation, coupled with coverage of traditional and advanced systems provides an understanding of industrial realities that prepares readers for the future evolution of industrial operations.




Practical Process Control for Engineers and Technicians


Book Description

This book is aimed at engineers and technicians who need to have a clear, practical understanding of the essentials of process control, loop tuning and how to optimize the operation of their particular plant or process. The reader would typically be involved in the design, implementation and upgrading of industrial control systems. Mathematical theory has been kept to a minimum with the emphasis throughout on practical applications and useful information.This book will enable the reader to:* Specify and design the loop requirements for a plant using PID control* Identify and apply the essential building blocks in automatic control* Apply the procedures for open and closed loop tuning* Tune control loops with significant dead-times* Demonstrate a clear understanding of analog process control and how to tune analog loops* Explain concepts used by major manufacturers who use the most up-to-date technology in the process control field·A practical focus on the optimization of process and plant·Readers develop professional competencies, not just theoretical knowledge·Reduce dead-time with loop tuning techniques




A Real-Time Approach to Process Control


Book Description

A Real- Time Approach to Process Control provides the reader with both a theoretical and practical introduction to this increasingly important approach. Assuming no prior knowledge of the subject, this text introduces all of the applied fundamentals of process control from instrumentation to process dynamics, PID loops and tuning, to distillation, multi-loop and plant-wide control. In addition, readers come away with a working knowledge of the three most popular dynamic simulation packages. The text carefully balances theory and practice by offering readings and lecture materials along with hands-on workshops that provide a 'virtual' process on which to experiment and from which to learn modern, real time control strategy development. As well as a general updating of the book specific changes include: A new section on boiler control in the chapter on common control loops A major rewrite of the chapters on distillation column control and multiple single-loop control schemes The addition of new figures throughout the text Workshop instructions will be altered to suit the latest versions of HYSYS, ASPEN and DYNSIM simulation software A new solutions manual for the workshop problems




Process Control


Book Description

Master process control hands on, through practical examples and MATLAB(R) simulations This is the first complete introduction to process control that fully integrates software tools--enabling professionals and students to master critical techniques hands on, through computer simulations based on the popular MATLAB environment. Process Control: Modeling, Design, and Simulation teaches the field's most important techniques, behaviors, and control problems through practical examples, supplemented by extensive exercises--with detailed derivations, relevant software files, and additional techniques available on a companion Web site. Coverage includes: Fundamentals of process control and instrumentation, including objectives, variables, and block diagrams Methodologies for developing dynamic models of chemical processes Dynamic behavior of linear systems: state space models, transfer function-based models, and more Feedback control; proportional, integral, and derivative (PID) controllers; and closed-loop stability analysis Frequency response analysis techniques for evaluating the robustness of control systems Improving control loop performance: internal model control (IMC), automatic tuning, gain scheduling, and enhancements to improve disturbance rejection Split-range, selective, and override strategies for switching among inputs or outputs Control loop interactions and multivariable controllers An introduction to model predictive control (MPC) Bequette walks step by step through the development of control instrumentation diagrams for an entire chemical process, reviewing common control strategies for individual unit operations, then discussing strategies for integrated systems. The book also includes 16 learning modules demonstrating how to use MATLAB and SIMULINK to solve several key control problems, ranging from robustness analyses to biochemical reactors, biomedical problems to multivariable control.




Principles and Practices of Automatic Process Control


Book Description

Highly practical and applied, this Third Edition of Smith and Corripio’s Principles and Practice of Automatic Process Control continues to present all the necessary theory for the successful practice of automatic process control. The authors discuss both introductory and advanced control strategies, and show how to apply those strategies in industrial examples drawn from their own professional practice. The strengths of the book are its simplicity, excellent examples, practical approach, real case studies, and focus on Chemical Engineering processes. More than any other textbook in the field, Smith & Corripio prepares a student for use of process control in a manufacturing setting. Course Hierarchy: Course is called Process Control Senior level course Same course as Seborg but Smith is considered more accessible




Process Dynamics and Control


Book Description

The new 4th edition of Seborg’s Process Dynamics Control provides full topical coverage for process control courses in the chemical engineering curriculum, emphasizing how process control and its related fields of process modeling and optimization are essential to the development of high-value products. A principal objective of this new edition is to describe modern techniques for control processes, with an emphasis on complex systems necessary to the development, design, and operation of modern processing plants. Control process instructors can cover the basic material while also having the flexibility to include advanced topics.




Automatic Control Systems


Book Description

Real-world applications--Integrates real-world analysis and design applications throughout the text. Examples include: the sun-seeker system, the liquid-level control, dc-motor control, and space-vehicle payload control. * Examples and problems--Includes an abundance of illustrative examples and problems. * Marginal notes throughout the text highlight important points.




Automatic Process Control


Book Description




Basic Process Engineering Control


Book Description

Basic Process Engineering Control is based on the extensive experience of the authors in the field of industry, teaching and writing. The textbook showcases methods, problems, and tools used in this well-established fi eld of chemical engineering and goes beyond traditional process engineering by applying the same principles to biomedical processes, energy production, and management of environmental issues. Starting from the behavior of processes, Basic Process Engineering Control explains all determinations in “chemical systems” or “process systems”, such as the intricate inter dependency of the process stages, analyzing the hardware components of a control system, and the design of an appropriate control system for a process parameter or a whole process. Although mainly aimed at students and graduates, the book is equally interesting to chemical or process engineers in all industries or research and development centers. Readers will notice the similarity in approach from the system and control point of view between different fields, which might otherwise seem far from each other but share the same control philosophy.