Fundamentals of Complex Analysis with Applications to Engineering and Science (Classic Version)


Book Description

This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. This is the best seller in this market. It provides a comprehensive introduction to complex variable theory and its applications to current engineering problems. It is designed to make the fundamentals of the subject more easily accessible to students who have little inclination to wade through the rigors of the axiomatic approach. Modeled after standard calculus books--both in level of exposition and layout--it incorporates physical applications throughout the presentation, so that the mathematical methodology appears less sterile to engineering students.




Introductory Complex Analysis


Book Description

Shorter version of Markushevich's Theory of Functions of a Complex Variable, appropriate for advanced undergraduate and graduate courses in complex analysis. More than 300 problems, some with hints and answers. 1967 edition.




Complex Analysis with Applications


Book Description

The basics of what every scientist and engineer should know, from complex numbers, limits in the complex plane, and complex functions to Cauchy's theory, power series, and applications of residues. 1974 edition.




Complex Analysis


Book Description

All needed notions are developed within the book: with the exception of fundamentals which are presented in introductory lectures, no other knowledge is assumed Provides a more in-depth introduction to the subject than other existing books in this area Over 400 exercises including hints for solutions are included




Modular Forms


Book Description

In this essential, Claudia Alfes-Neumann discusses applications of the theory of modular forms and their importance as fundamental tools in mathematics. These functions - initially defined purely analytically - appear in many areas of mathematics: very prominently in number theory, but also in geometry, combinatorics, representation theory, and physics. After explaining necessary basics from complex analysis, the author defines modular forms and shows some applications in number theory. Furthermore, she takes up two important aspects of the theory surrounding modular forms: Hecke operators and L-functions of modular forms. The essentials conclude with an outlook on real-analytic generalizations of modular forms, which play an important role in current research. This Springer essential is a translation of the original German 1st edition essentials, Modulformen by Claudia Alfes-Neumann, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2020. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.




A First Course in Complex Analysis with Applications


Book Description

The new Second Edition of A First Course in Complex Analysis with Applications is a truly accessible introduction to the fundamental principles and applications of complex analysis. Designed for the undergraduate student with a calculus background but no prior experience with complex variables, this text discusses theory of the most relevant mathematical topics in a student-friendly manor. With Zill's clear and straightforward writing style, concepts are introduced through numerous examples and clear illustrations. Students are guided and supported through numerous proofs providing them with a higher level of mathematical insight and maturity. Each chapter contains a separate section on the applications of complex variables, providing students with the opportunity to develop a practical and clear understanding of complex analysis.




Fundamentals of Complex Analysis


Book Description

The book divided in ten chapters deals with: " Algebra of complex numbers and its various geometrical properties, properties of polar form of complex numbers and regions in the complex plane. " Limit, continuity, differentiability. " Different kinds of complex valued functions. " Different types of transformations. " Conformal mappings of different functions. " Properties of bilinear and special bilinear transformation. " Line integrals, their properties and different theorems. " Sequences and series, Power series, Zero s of functions, residues and residue theorem, meromorphic functions, different kinds of singularities. " Evaluation of real integrals. " Analytic continuation, construction of harmonic functions, infinite product, their properties and Gamma function. " Schwarz-Christoffel transformations, mapping by multi valued functions, entire functions. " Jenson s theorem and Poisson-Jenson theorem. The book is designed as a textbook for UG and PG students of science as well as engineering




Function Theory of One Complex Variable


Book Description

Complex analysis is one of the most central subjects in mathematics. It is compelling and rich in its own right, but it is also remarkably useful in a wide variety of other mathematical subjects, both pure and applied. This book is different from others in that it treats complex variables as a direct development from multivariable real calculus. As each new idea is introduced, it is related to the corresponding idea from real analysis and calculus. The text is rich with examples andexercises that illustrate this point. The authors have systematically separated the analysis from the topology, as can be seen in their proof of the Cauchy theorem. The book concludes with several chapters on special topics, including full treatments of special functions, the prime number theorem,and the Bergman kernel. The authors also treat $Hp$ spaces and Painleve's theorem on smoothness to the boundary for conformal maps. This book is a text for a first-year graduate course in complex analysis. It is an engaging and modern introduction to the subject, reflecting the authors' expertise both as mathematicians and as expositors.




Fundamentals of Matrix Analysis with Applications


Book Description

An accessible and clear introduction to linear algebra with a focus on matrices and engineering applications Providing comprehensive coverage of matrix theory from a geometric and physical perspective, Fundamentals of Matrix Analysis with Applications describes the functionality of matrices and their ability to quantify and analyze many practical applications. Written by a highly qualified author team, the book presents tools for matrix analysis and is illustrated with extensive examples and software implementations. Beginning with a detailed exposition and review of the Gauss elimination method, the authors maintain readers’ interest with refreshing discussions regarding the issues of operation counts, computer speed and precision, complex arithmetic formulations, parameterization of solutions, and the logical traps that dictate strict adherence to Gauss’s instructions. The book heralds matrix formulation both as notational shorthand and as a quantifier of physical operations such as rotations, projections, reflections, and the Gauss reductions. Inverses and eigenvectors are visualized first in an operator context before being addressed computationally. Least squares theory is expounded in all its manifestations including optimization, orthogonality, computational accuracy, and even function theory. Fundamentals of Matrix Analysis with Applications also features: Novel approaches employed to explicate the QR, singular value, Schur, and Jordan decompositions and their applications Coverage of the role of the matrix exponential in the solution of linear systems of differential equations with constant coefficients Chapter-by-chapter summaries, review problems, technical writing exercises, select solutions, and group projects to aid comprehension of the presented concepts Fundamentals of Matrix Analysis with Applications is an excellent textbook for undergraduate courses in linear algebra and matrix theory for students majoring in mathematics, engineering, and science. The book is also an accessible go-to reference for readers seeking clarification of the fine points of kinematics, circuit theory, control theory, computational statistics, and numerical algorithms.




Fundamentals of Mathematical Analysis


Book Description

Fundamentals of Mathematical Analysis explores real and functional analysis with a substantial component on topology. The three leading chapters furnish background information on the real and complex number fields, a concise introduction to set theory, and a rigorous treatment of vector spaces. Fundamentals of Mathematical Analysis is an extensive study of metric spaces, including the core topics of completeness, compactness and function spaces, with a good number of applications. The later chapters consist of an introduction to general topology, a classical treatment of Banach and Hilbert spaces, the elements of operator theory, and a deep account of measure and integration theories. Several courses can be based on the book. This book is suitable for a two-semester course on analysis, and material can be chosen to design one-semester courses on topology or real analysis. It is designed as an accessible classical introduction to the subject and aims to achieve excellent breadth and depth and contains an abundance of examples and exercises. The topics are carefully sequenced, the proofs are detailed, and the writing style is clear and concise. The only prerequisites assumed are a thorough understanding of undergraduate real analysis and linear algebra, and a degree of mathematical maturity.