Fundamentals of Drone Technology


Book Description

Fundamentals of Drone Technology" provides a comprehensive introduction to the rapidly evolving field of Drone Technology. This textbook covers the essential principles of drone technology, including their design, operation, and applications. It begins with an overview of different types of drones—such as fixed-wing, multi-rotor, single-rotor, and hybrid models—highlighting their unique features and uses in various industries. The book delves into the core components of drones, including frames, motors, electronic speed controllers, flight controllers, and sensors, explaining their functions and how they work together to ensure efficient flight. It also addresses the regulatory landscape, particularly focusing on the rules and guidelines established by aviation authorities like the DGCA, to ensure safe and legal drone operations. Practical sections on assembling and calibrating drones provide readers with hands-on knowledge essential for both hobbyists and professionals. Additionally, the textbook explores advanced topics such as drone sensors, payloads, and the principles of flight, making it an invaluable resource for understanding the intricacies of modern drone technology. Overall, "Fundamentals of Drone Technology" serves as a foundational guide for anyone interested in the technical and regulatory aspects of UAVs.




Fundamentals of Capturing and Processing Drone Imagery and Data


Book Description

Unmanned aircraft systems (UAS) are rapidly emerging as flexible platforms for capturing imagery and other data across the sciences. Many colleges and universities are developing courses on UAS-based data acquisition. Fundamentals of Capturing and Processing Drone Imagery and Data is a comprehensive, introductory text on how to use unmanned aircraft systems for data capture and analysis. It provides best practices for planning data capture missions and hands-on learning modules geared toward UAS data collection, processing, and applications. FEATURES Lays out a step-by-step approach to identify relevant tools and methods for UAS data/image acquisition and processing Provides practical hands-on knowledge with visual interpretation, well-organized and designed for a typical 16-week UAS course offered on college and university campuses Suitable for all levels of readers and does not require prior knowledge of UAS, remote sensing, digital image processing, or geospatial analytics Includes real-world environmental applications along with data interpretations and software used, often nonproprietary Combines the expertise of a wide range of UAS researchers and practitioners across the geospatial sciences This book provides a general introduction to drones along with a series of hands-on exercises that students and researchers can engage with to learn to integrate drone data into real-world applications. No prior background in remote sensing, GIS, or drone knowledge is needed to use this book. Readers will learn to process different types of UAS imagery for applications (such as precision agriculture, forestry, urban landscapes) and apply this knowledge in environmental monitoring and land-use studies.




Industrial System Engineering for Drones


Book Description

Explore a complex mechanical system where electronics and mechanical engineers work together as a cross-functional team. Using a working example, this book is a practical “how to” guide to designing a drone system. As system design becomes more and more complicated, systematic, and organized, there is an increasingly large gap in how system design happens in the industry versus what is taught in academia. While the system design basics and fundamentals mostly remain the same, the process, flow, considerations, and tools applied in industry are far different than that in academia. Designing Drone Systems takes you through the entire flow from system conception to design to production, bridging the knowledge gap between academia and the industry as you build your own drone systems. What You’ll LearnGain a high level understanding of drone systems Design a drone systems and elaborating the various aspects and considerations of design Review the principles of the industrial system design process/flow, and the guidelines for drone systems Look at the challenges, limitations, best practices, and patterns of system design Who This Book Is For Primarily for beginning or aspiring system design experts, recent graduates, and system design engineers. Teachers, trainers, and system design mentors can also benefit from this content.




A Theory of the Drone


Book Description

The Parisian research scholar and author of Manhunts offers a philosophical perspective on the role of drone technology in today's changing military environments and the implications of drone capabilities in enabling democratic choices. 12,500 first printing.




Internet of Things


Book Description

This reference text discusses intelligent robotic and drone technology with embedded Internet of Things (IoT) for smart applications. The text discusses future directions of optimization methods with various engineering and science fundamentals used in robotics and drone-based applications. Its emphasis is on covering deep learning and similar models of neural network-based learning techniques employed in solving optimization problems of different engineering and science applications. It covers important topics including sensors and actuators in the internet of things (IoT), internet-of-robotics-things (IoRT), IoT in agriculture and food processing, routing challenges in flying Ad-hoc networks, and smart cities. The book will serve as a useful text for graduate students and professionals in the fields of electrical engineering, electronics engineering, computer science, and mechanical engineering.




Introduction to Unmanned Aircraft Systems


Book Description

Introduction to Unmanned Aircraft Systems surveys the fundamentals of unmanned aircraft system (UAS) operations, from sensors, controls, and automation to regulations, safety procedures, and human factors. It is designed for the student or layperson and thus assumes no prior knowledge of UASs, engineering, or aeronautics. Dynamic and well-illustrated, the first edition of this popular primer was created in response to a need for a suitable university-level textbook on the subject. Fully updated and significantly expanded, this new Second Edition: Reflects the proliferation of technological capability, miniaturization, and demand for aerial intelligence in a post-9/11 world Presents the latest major commercial uses of UASs and unmanned aerial vehicles (UAVs) Enhances its coverage with greater depth and support for more advanced coursework Provides material appropriate for introductory UAS coursework in both aviation and aerospace engineering programs Introduction to Unmanned Aircraft Systems, Second Edition capitalizes on the expertise of contributing authors to instill a practical, up-to-date understanding of what it takes to safely operate UASs in the National Airspace System (NAS). Complete with end-of-chapter discussion questions, this book makes an ideal textbook for a first course in UAS operations.




Handbook of Unmanned Aerial Vehicles


Book Description

The Handbook of Unmanned Aerial Vehicles is a reference text for the academic and research communities, industry, manufacturers, users, practitioners, Federal Government, Federal and State Agencies, the private sector, as well as all organizations that are and will be using unmanned aircraft in a wide spectrum of applications. The Handbook covers all aspects of UAVs, from design to logistics and ethical issues. It is also targeting the young investigator, the future inventor and entrepreneur by providing an overview and detailed information of the state-of-the-art as well as useful new concepts that may lead to innovative research. The contents of the Handbook include material that addresses the needs and ‘know how’ of all of the above sectors targeting a very diverse audience. The Handbook offers a unique and comprehensive treatise of everything one needs to know about unmanned aircrafts, from conception to operation, from technologies to business activities, users, OEMs, reference sources, conferences, publications, professional societies, etc. It should serve as a Thesaurus, an indispensable part of the library for everyone involved in this area. For the first time, contributions by the world’s top experts from academia, industry, government and the private sector, are brought together to provide unique perspectives on the current state-of-the-art in UAV, as well as future directions. The Handbook is intended for the expert/practitioner who seeks specific technical/business information, for the technically-oriented scientists and engineers, but also for the novice who wants to learn more about the status of UAV and UAV-related technologies. The Handbook is arranged in a user-friendly format, divided into main parts referring to: UAV Design Principles; UAV Fundamentals; UAV Sensors and Sensing Strategies; UAV Propulsion; UAV Control; UAV Communication Issues; UAV Architectures; UAV Health Management Issues; UAV Modeling, Simulation, Estimation and Identification; MAVs and Bio-Inspired UAVs; UAV Mission and Path Planning; UAV Autonomy; UAV Sense, Detect and Avoid Systems; Networked UAVs and UAV Swarms; UAV Integration into the National Airspace; UAV-Human Interfaces and Decision Support Systems; Human Factors and Training; UAV Logistics Support; UAV Applications; Social and Ethical Implications; The Future of UAVs. Each part is written by internationally renowned authors who are authorities in their respective fields. The contents of the Handbook supports its unique character as a thorough and comprehensive reference book directed to a diverse audience of technologists, businesses, users and potential users, managers and decision makers, novices and experts, who seek a holistic volume of information that is not only a technical treatise but also a source for answers to several questions on UAV manufacturers, users, major players in UAV research, costs, training required and logistics issues.




Conservation Drones


Book Description

This book aims to further build capacity in the conservation community to use drones for conservation and inspire others to adapt emerging technologies for conservation.




Theory, Design, and Applications of Unmanned Aerial Vehicles


Book Description

This book provides a complete overview of the theory, design, and applications of unmanned aerial vehicles. It covers the basics, including definitions, attributes, manned vs. unmanned, design considerations, life cycle costs, architecture, components, air vehicle, payload, communications, data link, and ground control stations. Chapters cover types and civilian roles, sensors and characteristics, alternative power, communications and data links, conceptual design, human machine interface, sense and avoid systems, civil airspace issues and integration efforts, navigation, autonomous control, swarming, and future capabilities.




Introduction to Multicopter Design and Control


Book Description

This book is the first textbook specially on multicopter systems in the world. It provides a comprehensive overview of multicopter systems, rather than focusing on a single method or technique. The fifteen chapters are divided into five parts, covering the topics of multicopter design, modeling, state estimation, control, and decision-making. It differs from other books in the field in three major respects: it is basic and practical, offering self-contained content and presenting hands-on methods; it is comprehensive and systematic; and it is timely. It is also closely related to the autopilot that users often employ today and provides insights into the code employed. As such, it offers a valuable resource for anyone interested in multicopters, including students, teachers, researchers, and engineers. This introductory text is a welcome addition to the literature on multicopter design and control, on which the author is an acknowledged authority. The book is directed to advanced undergraduate and beginning graduate students in aeronautical and control (or electrical) engineering, as well as to multicopter designers and hobbyists. ------- Professor W. Murray Wonham, University of Toronto "This is the single best introduction to multicopter control. Clear, comprehensive and progressing from basic principles to advanced techniques, it's a must read for anyone hoping to learn how to design flying robots." ------- Chris Anderson, 3D Robotics CEO.