Heat Transfer in Process Engineering


Book Description

Cutting-edge heat transfer principles and design applications Apply advanced heat transfer concepts to your chemical, petrochemical, and refining equipment designs using the detailed information contained in this comprehensive volume. Filled with valuable graphs, tables, and charts, Heat Transfer in Process Engineering covers the latest analytical and empirical methods for use with current industry software. Select heat transfer equipment, make better use of design software, calculate heat transfer coefficients, troubleshoot your heat transfer process, and comply with design and construction standards. Heat Transfer in Process Engineering allows you to: Review heat transfer principles with a direct focus on process equipment design Design, rate, and specify shell and tube, plate, and hairpin heat exchangers Design, rate, and specify air coolers with plain or finned tubes Design, rate, and specify different types of condensers with tube or shellside condensation for pure fluids or multicomponent mixtures Understand the principles and correlations of boiling heat transfer, with their limits on and applications to different types of reboiler design Apply correlations for fired heater ratings, for radiant and convective zones, and calculate fuel efficiency Obtain a set of useful Excel worksheets for process heat transfer calculations




Heat Transfer Engineering


Book Description

Heat Transfer Engineering: Fundamentals and Techniques reviews the core mechanisms of heat transfer and provides modern methods to solve practical problems encountered by working practitioners, with a particular focus on developing engagement and motivation. The book reviews fundamental concepts in conduction, forced convection, free convection, boiling, condensation, heat exchangers and mass transfer succinctly and without unnecessary exposition. Throughout, copious examples drawn from current industrial practice are examined with an emphasis on problem-solving for interest and insight rather than the procedural approaches often adopted in courses. The book contains numerous important solved and unsolved problems, utilizing modern tools and computational sources wherever relevant. A subsection on common issues and recent advances is presented in each chapter, encouraging the reader to explore a greater diversity of problems. - Reveals physical solutions alongside their application in practical problems, with an aim of generating interest from reality rather than dry exposition - Reviews pertinent, contemporary computational tools, including emerging topics such as machine learning - Describes the complexity of modern heat transfer in an engaging and conversational style, greatly adding to the uniqueness and accessibility of the book




Heat Transfer


Book Description

The book provides an easy way to understand the fundamentals of heat transfer. The reader will acquire the ability to design and analyze heat exchangers. Without extensive derivation of the fundamentals, the latest correlations for heat transfer coefficients and their application are discussed. The following topics are presented - Steady state and transient heat conduction - Free and forced convection - Finned surfaces - Condensation and boiling - Radiation - Heat exchanger design - Problem-solving After introducing the basic terminology, the reader is made familiar with the different mechanisms of heat transfer. Their practical application is demonstrated in examples, which are available in the Internet as MathCad files for further use. Tables of material properties and formulas for their use in programs are included in the appendix. This book will serve as a valuable resource for both students and engineers in the industry. The author’s experience indicates that students, after 40 lectures and exercises of 45 minutes based on this textbook, have proved capable of designing independently complex heat exchangers such as for cooling of rocket propulsion chambers, condensers and evaporators for heat pumps.




Fundamentals of Heat and Mass Transfer


Book Description

Fundamentals of Heat and Mass Transfer, 7th Edition is the gold standard of heat transfer pedagogy for more than 30 years, with a commitment to continuous improvement by four authors having more than 150 years of combined experience in heat transfer education, research and practice. Using a rigorous and systematic problem-solving methodology pioneered by this text, it is abundantly filled with examples and problems that reveal the richness and beauty of the discipline. This edition maintains its foundation in the four central learning objectives for students and also makes heat and mass transfer more approachable with an additional emphasis on the fundamental concepts, as well as highlighting the relevance of those ideas with exciting applications to the most critical issues of today and the coming decades: energy and the environment. An updated version of Interactive Heat Transfer (IHT) software makes it even easier to efficiently and accurately solve problems.







Kern's Process Heat Transfer


Book Description

This edition ensures the legacy of the original 1950 classic, Process Heat Transfer, by Donald Q. Kern that by many is held to be the gold standard. This second edition book is divided into three parts: Fundamental Principles; Heat Exchangers; and Other Heat Transfer Equipment/ Considerations. Part I provides a series of chapters concerned with introductory topics that are required when solving heat transfer problems. This part of the book deals with topics such as steady-state heat conduction, unsteady-state conduction, forced convection, free convection, and radiation. Part II is considered by the authors to be the "meat" of the book, and the primary reason for undertaking this project. Other than minor updates, Part II remains relatively unchanged from the first edition. Notably, it includes Kern's original design methodology for double-pipe, shell-and-tube, and extended surface heat exchangers. Part II also includes boiling and condensation, boilers, cooling towers and quenchers, as well as newly designed open-ended problems. Part III of the book examines other related topics of interest, including refrigeration and cryogenics, batch and unsteady-state processes, health & safety, and the accompanying topic of risk. In addition, this part also examines the impact of entropy calculations on exchanger design. A 36-page Appendix includes 12 tables of properties, layouts and design factors. WHAT IS NEW IN THE 2ND EDITION Changes that are addressed in the 2nd edition so that Kern's original work continues to remain relevant in 21st century process engineering include: Updated Heat Exchanger Design Increased Number of Illustrative Examples Energy Conservation/ Entropy Considerations Environmental Considerations Health & Safety Risk Assessment Refrigeration and Cryogenics




Process Heat Transfer


Book Description

This classic text is an exploration of the practical aspects of thermodynamics and heat transfer. It was designed for daily use and reference for system design and for troubleshooting common engineering problems-an indispensable resource for practicing process engineers.




An Introduction to Fluid Mechanics and Heat Transfer


Book Description

First published in 1975 as the third edition of a 1957 original, this book presents the fundamental ideas of fluid flow, viscosity, heat conduction, diffusion, the energy and momentum principles, and the method of dimensional analysis. These ideas are subsequently developed in terms of their important practical applications, such as flow in pipes and channels, pumps, compressors and heat exchangers. Later chapters deal with the equation of fluid motion, turbulence and the general equations of forced convection. The final section discusses special problems in process engineering, including compressible flow in pipes, solid particles in fluid flow, flow through packed beds, condensation and evaporation. This book will be of value to anyone with an interest the wider applications of fluid mechanics and heat transfer.




Heat and Mass Transfer


Book Description

This book provides a solid foundation in the principles of heat and mass transfer and shows how to solve problems by applying modern methods. The basic theory is developed systematically, exploring in detail the solution methods to all important problems. The revised second edition incorporates state-of-the-art findings on heat and mass transfer correlations. The book will be useful not only to upper- and graduate-level students, but also to practicing scientists and engineers. Many worked-out examples and numerous exercises with their solutions will facilitate learning and understanding, and an appendix includes data on key properties of important substances.




Fundamentals of Food Process Engineering


Book Description

Ten years after the publication of the first edition of Fundamentals of Food Process Engineering, there have been significant changes in both food science education and the food industry itself. Students now in the food science curric ulum are generally better prepared mathematically than their counterparts two decades ago. The food science curriculum in most schools in the United States has split into science and business options, with students in the science option following the Institute of Food Technologists' minimum requirements. The minimum requirements include the food engineering course, thus students en rolled in food engineering are generally better than average, and can be chal lenged with more rigor in the course material. The food industry itself has changed. Traditionally, the food industry has been primarily involved in the canning and freezing of agricultural commodi ties, and a company's operations generally remain within a single commodity. Now, the industry is becoming more diversified, with many companies involved in operations involving more than one type of commodity. A number of for mulated food products are now made where the commodity connection becomes obscure. The ability to solve problems is a valued asset in a technologist, and often, solving problems involves nothing more than applying principles learned in other areas to the problem at hand. A principle that may have been commonly used with one commodity may also be applied to another commodity to produce unique products.