Fundamentals of Molecular Spectroscopy


Book Description

A non-mathematical introduction to molecular spectroscopy. This revision includes: a chapter on the spectroscopy of surfaces and solids, new diagrams and problems, spectra that has been re-recorded on modern instruments, and enhanced applications of Fourier transform principles.




Fundamentals of Molecular Spectroscopy.


Book Description

The Book Has 15 Chapters In All. The First Two Chapters Are Related To Atomic Structure And Atomic Spectra. The Next Chapter Is Devoted To Nature Of Chemical Bonds As Looked Upon Through Quantum Mechanics, Followed By All Types Of Spectroscopy. Every Aspect Is Explained With Some Typical Spectra. The Underlying Theory So Developed Will Help Students To Carry Out Spectral Analysis.Only Simple Quantum Mechanics Relevant To Simple Molecular Structure Has Been Given. Attempt Has Been Made To Relate The Characteristic Chemical Behavior Of These Molecules With Its Mo And Thus To Molecular Spectra. One Will Not Find Such Relationship In Any Book, But This Will Make Chemistry, As Such, Still More Interesting.Application Of Infrared And Ultra-Violet Spectroscopy, Nmr And Mass Spectra In Structure Determination Of Organic Molecules Are Very Elegantly Presented. In The Fourteenth Chapter, Lasers And Their Applications To Various Types Of Second, Third, And Fourth Order Scattering Spectroscopy Have Been Developed. The Book Has Minimum But Essential Mathematics With Very Easy Format In Its Text. Such An Approach Will Give A Clear Understanding Of The Subject And Provides Knowledge To Excel At Any Level University Examination, Competitive Examination, And Before Interview Boards.




Quantum Mechanical Foundations of Molecular Spectroscopy


Book Description

A concise textbook bridging quantum theory and spectroscopy! Designed as a practical text, Quantum Mechanical Foundations of Molecular Spectroscopy covers the quantum mechanical fundamentals of molecular spectroscopy from the view of a professional spectroscopist, rather than a theoretician. Written by a noted expert on the topic, the book puts the emphasis on the relationship between spectroscopy and quantum mechanics, and provides the background information and derivations of the subjects needed to understand spectroscopy including: stationary energy states, transitions between these states, selection rules, and symmetry. The phenomenal growth of all forms of spectroscopy over the past eight decades has contributed enormously to our understanding of molecular structure and properties. Today spectroscopy covers a broad field including the modern magnetic resonance techniques, non-linear, laser and fiber-based spectroscopy, surface and surface-enhanced spectroscopy, pico- and femtosecond time resolved spectroscopy, and many more. This up-to-date resource discusses several forms of spectroscopy that are used in many fields of science, such as fluorescence, surface spectroscopies, linear and non-linear Raman spectroscopy and spin spectroscopy. This important text: Contains the physics and mathematics needed to understand spectroscopy Explores spectroscopic methods the are widely used in chemistry, biophysics, biology, and materials science Offers a text written by an experienced lecturer and practitioner of spectroscopic methods Includes detailed explanations and worked examples Written for chemistry, biochemistry, material sciences, and physics students, Quantum Mechanical Foundations of Molecular Spectroscopy provides an accessible text for understanding molecular spectroscopy.




Fundamentals of Molecular Spectroscopy


Book Description

A concise introduction to the spectroscopy of atoms and molecules. Treatment emphasizes an intuitive understanding of topics and the development of problem-solving techniques. Provides background material on time-dependent perturbation theory and second quantization, and incorporates many illustrative spectra from the literature. Examines electronic band spectra and polyatomic rotations, which makes accessible the energy levels and selection rules that govern microwave spectroscopy without recourse to detailed rotational eigenstates. Also covers triatomic molecules, aromatic hydrocarbons, lasers, multiphoton spectroscopies, and diagrammatic perturbation techniques.




Fundamentals of Molecular Symmetry


Book Description

Winner of a 2005 CHOICE Outstanding Academic Book Award Molecular symmetry is an easily applied tool for understanding and predicting many of the properties of molecules. Traditionally, students are taught this subject using point groups derived from the equilibrium geometry of the molecule. Fundamentals of Molecular Symmetry shows how to set up symmetry groups for molecules using the more general idea of energy invariance. It is no more difficult than using molecular geometry and one obtains molecular symmetry groups. The book provides an introductory description of molecular spectroscopy and quantum mechanics as the foundation for understanding how molecular symmetry is defined and used. The approach taken gives a balanced account of using both point groups and molecular symmetry groups. Usually the point group is only useful for isolated, nonrotating molecules, executing small amplitude vibrations, with no tunneling, in isolated electronic states. However, for the chemical physicist or physical chemist who wishes to go beyond these limitations, the molecular symmetry group is almost always required.




Fundamentals of Quantum Chemistry


Book Description

As quantum theory enters its second century, it is fitting to examine just how far it has come as a tool for the chemist. Beginning with Max Planck’s agonizing conclusion in 1900 that linked energy emission in discreet bundles to the resultant black-body radiation curve, a body of knowledge has developed with profound consequences in our ability to understand nature. In the early years, quantum theory was the providence of physicists and certain breeds of physical chemists. While physicists honed and refined the theory and studied atoms and their component systems, physical chemists began the foray into the study of larger, molecular systems. Quantum theory predictions of these systems were first verified through experimental spectroscopic studies in the electromagnetic spectrum (microwave, infrared and ultraviolet/visible), and, later, by nuclear magnetic resonance (NMR) spectroscopy. Over two generations these studies were hampered by two major drawbacks: lack of resolution of spectroscopic data, and the complexity of calculations. This powerful theory that promised understanding of the fundamental nature of molecules faced formidable challenges. The following example may put things in perspective for today’s chemistry faculty, college seniors or graduate students: As little as 40 years ago, force field calculations on a molecule as simple as ketene was a four to five year dissertation project.




Microwave Spectroscopy


Book Description

Two Nobel Laureates present a systematic, comprehensive account of the theory, techniques, experimental data, and interpretation involved in the study of microwave spectroscopy. Eighteen self-contained chapters on key topics may be read individually or serially, making this volume ideal as a reference as well as a textbook. 190 tables and figures. 1955 edition.




Atomic and Molecular Spectroscopy


Book Description

Spectroscopy is the study of electromagnetic radiation and its interaction with solid, liquid, gas and plasma. It is one of the widely used analytical techniques to study the structure of atoms and molecules. The technique is also employed to obtain information about atoms and molecules as a result of their distinctive spectra. The fast-spreading field of spectroscopic applications has made a noteworthy influence on many disciplines, including energy research, chemical processing, environmental protection and medicine. This book aims to introduce students to the topic of spectroscopy. The author has avoided the mathematical aspects of the subject as far as possible; they appear in the text only when inevitable. Including topics such as time-dependent perturbation theory, laser action and applications of Group Theory in interpretation of spectra, the book offers a detailed coverage of the basic concepts and applications of spectroscopy.




Symmetry and Spectroscopy


Book Description

Informal, effective undergraduate-level text introduces vibrational and electronic spectroscopy, presenting applications of group theory to the interpretation of UV, visible, and infrared spectra without assuming a high level of background knowledge. 200 problems with solutions. Numerous illustrations. "A uniform and consistent treatment of the subject matter." — Journal of Chemical Education.