Fundamentals of Switching Theory and Logic Design


Book Description

Fundamentals of Switching Theory and Logic Design discusses the basics of switching theory and logic design from a slightly alternative point of view and also presents links between switching theory and related areas of signal processing and system theory. Switching theory is a branch of applied mathematic providing mathematical foundations for logic design, which can be considered as a part of digital system design concerning realizations of systems whose inputs and outputs are described by logic functions.










Introduction to Switching Theory and Logical Design


Book Description

Provides the knowledge and skills that are basic to all digital system design. Solid foundation of theory permits development of systematic design procedures. Presents classical methods, such as Karnaugh maps. Quine-McCluskey minimization. Mealy and Moore circuits, state-table minimization, hazard-free asynchronous designs, etc. This edition features design with MSI circuits, including PLA's, and register transfer (state machine) approaches to sequential system design.




Cognitive Computing and Cyber Physical Systems


Book Description

This proceedings constitutes the post-conference proceedings of the 3rd EAI International Conference on Cognitive Computing and Cyber Physical Systems, IC4S 2022, held at Vishnu Institute of Technology, Bhimavaram in Andhra Pradesh, India, in November 26-27, 2022. The theme of IC4S 2022 was: cognitive computing approaches with data mining and machine learning techniques. The 22 full papers were carefully reviewed and selected from 88 submissions. The papers are clustered in thematical issues as follows: machine learning and its applications; cyber security and networking; image processing; IoT applications; smart city eco-system and communications.




Design of Reconfigurable Logic Controllers


Book Description

This book presents the original concepts and modern techniques for specification, synthesis, optimisation and implementation of parallel logical control devices. It deals with essential problems of reconfigurable control systems like dependability, modularity and portability. Reconfigurable systems require a wider variety of design and verification options than the application-specific integrated circuits. The book presents a comprehensive selection of possible design techniques. The diversity of the modelling approaches covers Petri nets, state machines and activity diagrams. The preferences of the presented optimization and synthesis methods are not limited to increasing of the efficiency of resource use. One of the biggest advantages of the presented methods is the platform independence, the FPGA devices and single board computers are some of the examples of possible platforms. These issues and problems are illustrated with practical cases of complete control systems. If you expect a new look at the reconfigurable systems designing process or need ideas for improving the quality of the project, this book is a good choice.g process or need ideas for improving the quality of the project, this book is a good choice.




Theory and Practice of Natural Computing


Book Description

This book constitutes the refereed proceedings of the 8th International Conference on Theory and Practice of Natural Computing, TPNC 2019, held in Kingston, ON, Canada, in December 2019. The 15 full papers presented in this book, together with two invited talk, were carefully reviewed and selected from 38 submissions. The papers are organized in topical sections named: Applications of Natural Computing; Evolutionary Computation; Genetic Algorithms, Swarm Intelligence, and Heuristics; Quantum Computing and Information.




SWITCHING THEORY AND LOGIC DESIGN


Book Description

This comprehensive text on switching theory and logic design is designed for the undergraduate students of electronics and communication engineering, electrical and electronics engineering, electronics and computers engineering, electronics and instrumentation engineering, telecommunication engineering, computer science and engineering, and information technology. It will also be useful to M.Sc (electronics), M.Sc (computers), AMIE, IETE and diploma students. Written in a student-friendly style, this book, now in its Third Edition, provides an in-depth knowledge of switching theory and the design techniques of digital circuits. Striking a balance between theory and practice, it covers topics ranging from number systems, binary codes, logic gates and Boolean algebra to minimization using K-maps and tabular method, design of combinational logic circuits, synchronous and asynchronous sequential circuits, and algorithmic state machines. The book discusses threshold gates and programmable logic devices (PLDs). In addition, it elaborates on flip-flops and shift registers. Each chapter includes several fully worked-out examples so that the students get a thorough grounding in related design concepts. Short questions with answers, review questions, fill in the blanks, multiple choice questions and problems are provided at the end of each chapter. These help the students test their level of understanding of the subject and prepare for examinations confidently.




Fundamentals of Logic Design


Book Description

The latest book from Cengage Learning on Fundamentals of Logic Design, International Edition