Fused Deposition Modeling Based 3D Printing


Book Description

This book covers 3D printing activities by fused deposition modeling process. The two introductory chapters discuss the principle, types of machines and raw materials, process parameters, defects, design variations and simulation methods. Six chapters are devoted to experimental work related to process improvement, mechanical testing and characterization of the process, followed by three chapters on post-processing of 3D printed components and two chapters addressing sustainability concerns. Seven chapters discuss various applications including composites, external medical devices, drug delivery system, orthotic inserts, watertight components and 4D printing using FDM process. Finally, six chapters are dedicated to the study on modeling and optimization of FDM process using computational models, evolutionary algorithms, machine learning, metaheuristic approaches and optimization of layout and tool path.




Fused Deposition Modeling


Book Description

In this book, fused deposition modeling (FDM) is described with focus on product quality control and enhancement. The book begins by introducing the basics of FDM and its associated process parameters. Then, strategies for quality control and enhancement are described using case studies of both original results by the authors and from published literature. Resolution and print orientation, multi-objective optimizations and surface engineering are identified and discussed as the strategies for enhancing the quality of FDM products in this book.




Hot-Melt Extrusion


Book Description

Hot-melt extrusion (HME) - melting a substance and forcing it through an orifice under controlled conditions to form a new material - is an emerging processing technology in the pharmaceutical industry for the preparation of various dosage forms and drug delivery systems, for example granules and sustained release tablets. Hot-Melt Extrusion: Pharmaceutical Applications covers the main instrumentation, operation principles and theoretical background of HME. It then focuses on HME drug delivery systems, dosage forms and clinical studies (including pharmacokinetics and bioavailability) of HME products. Finally, the book includes some recent and novel HME applications, scale -up considerations and regulatory issues. Topics covered include: principles and die design of single screw extrusion twin screw extrusion techniques and practices in the laboratory and on production scale HME developments for the pharmaceutical industry solubility parameters for prediction of drug/polymer miscibility in HME formulations the influence of plasticizers in HME applications of polymethacrylate polymers in HME HME of ethylcellulose, hypromellose, and polyethylene oxide bioadhesion properties of polymeric films produced by HME taste masking using HME clinical studies, bioavailability and pharmacokinetics of HME products injection moulding and HME processing for pharmaceutical materials laminar dispersive & distributive mixing with dissolution and applications to HME technological considerations related to scale-up of HME processes devices and implant systems by HME an FDA perspective on HME product and process understanding improved process understanding and control of an HME process with near-infrared spectroscopy Hot-Melt Extrusion: Pharmaceutical Applications is an essential multidisciplinary guide to the emerging pharmaceutical uses of this processing technology for researchers in academia and industry working in drug formulation and delivery, pharmaceutical engineering and processing, and polymers and materials science. This is the first book from our brand new series Advances in Pharmaceutical Technology. Find out more about the series here.




3D Printing and Additive Manufacturing Technologies


Book Description

This book presents a selection of papers on advanced technologies for 3D printing and additive manufacturing, and demonstrates how these technologies have changed the face of direct, digital technologies for the rapid production of models, prototypes and patterns. Because of their wide range of applications, 3D printing and additive manufacturing technologies have sparked a powerful new industrial revolution in the field of manufacturing. The evolution of 3D printing and additive manufacturing technologies has changed design, engineering and manufacturing processes across such diverse industries as consumer products, aerospace, medical devices and automotive engineering. This book will help designers, R&D personnel, and practicing engineers grasp the latest developments in the field of 3D Printing and Additive Manufacturing.




Frontiers in Tissue Engineering


Book Description

Frontiers in Tissue Engineering is a carefully edited compilation of state-of-the-art contributions from an international authorship of experts in the diverse subjects that make up tissue engineering. A broad representation of the medical, scientific, industrial and regulatory community is detailed in the book. The work is an authoritative and comprehensive reference source for scientists and clinicians working in this emerging field. The book is divided into three parts: fundamentals and methods of tissue engineering, tissue engineering applied to specialised tissues, and tissue engineering applied to organs. The text offers many novel approaches, including a detailed coverage of cell-tissue interactions at cellular and molecular levels; cell-tissue surface, biochemical, and mechanical environments; biomaterials; engineering design; tissue-organ function; new approaches to tissue-organ regeneration and replacement of function; ethical considerations of tissue engineering; and government regulation of tissue-engineered products.




Teaching Learning Based Optimization Algorithm


Book Description

Describing a new optimization algorithm, the “Teaching-Learning-Based Optimization (TLBO),” in a clear and lucid style, this book maximizes reader insights into how the TLBO algorithm can be used to solve continuous and discrete optimization problems involving single or multiple objectives. As the algorithm operates on the principle of teaching and learning, where teachers influence the quality of learners’ results, the elitist version of TLBO algorithm (ETLBO) is described along with applications of the TLBO algorithm in the fields of electrical engineering, mechanical design, thermal engineering, manufacturing engineering, civil engineering, structural engineering, computer engineering, electronics engineering, physics and biotechnology. The book offers a valuable resource for scientists, engineers and practitioners involved in the development and usage of advanced optimization algorithms.




Rapid Prototyping: Principles And Applications (2nd Edition) (With Companion Cd-rom)


Book Description

Rapid Prototyping (RP) has revolutionized the landscape of how prototypes and products are made and small batch manufacturing carried out. This book gives a comprehensive coverage of RP and rapid tooling processes, data formats and applications. A CD-ROM, included in the book, presents RP and its principles in an interactive way to augment the learning experience.Special features:




3D Printing Basics for Entertainment Design


Book Description

Affordable 3D printers are rapidly becoming everyday additions to the desktops and worktables of entertainment design practitioners – whether working in theatre, theme parks, television and film, museum design, window displays, animatronics, or... you name it! We are beginning to ask important questions about these emerging practices: · How can we use 3D fabrication to make the design and production process more efficient? · How can it be used to create useful and creative items? · Can it save us from digging endlessly through thrift store shelves or from yet another late-night build? · And when budgets are tight, will it save us money? This quick start guide will help you navigate the alphabet soup that is 3D printing and begin to answer these questions for yourself. It outlines the basics of the technology, and its many uses in entertainment design. With straightforward and easy-to-follow information, you will learn ways to acquire printable 3D models, basic methods of creating your own, and tips along the way to produce successful prints. Over 70 professionals contributed images, guidance, and never-before-seen case studies filled with insider secrets to this book, including tutorials by designer and pioneer, Owen M. Collins.




Introduction to Plastics Engineering


Book Description

Introduction to Plastics Engineering provides a single reference covering the basics of polymer and plastics materials, and their properties, design, processing and applications in a practical way. The book discusses materials engineering through properties formulation, combining part design and processing to produce final products. This book will be a beneficial guide to materials engineers developing new formulations, processing engineers producing those formulations, and design and product engineers seeking to understand the materials and methods for developing new applications. The book incorporates material properties, engineering, processing, design, applications and sustainable and bio based solutions. Ideal for those just entering the industry, or transitioning between sectors, this is a quick, relevant and informative reference guide to plastics engineering and processing for engineers and plastics practitioners. - Provides a single unified reference covering plastics materials, properties, design, processing and applications - Offers end-to-end coverage of the industry, from formulation to part design, processing, and the final product - Serves as an ideal introductory book for new plastics engineers and students of plastics engineering - Provides a convenient reference for more experienced practitioners




Standards, Quality Control, and Measurement Sciences in 3D Printing and Additive Manufacturing


Book Description

Standards, Quality Control and Measurement Sciences in 3D Printing and Additive Manufacturing addresses the critical elements of the standards and measurement sciences in 3D printing to help readers design and create safe, reliable products of high quality. With 3D printing revolutionizing the process of manufacturing in a wide range of products, the book takes key features into account, such as design and fabrication and the current state and future potentials and opportunities in the field. In addition, the book provides an in-depth analysis on the importance of standards and measurement sciences. With self-test exercises at the end of each chapter, readers can improve their ability to take up challenges and become proficient in a number of topics related to 3D printing, including software usage, materials specification and benchmarking. - Helps the reader understand the quality framework tailored for 3D printing processes - Explains data format and process control in 3D printing - Provides an overview of different materials and characterization methods - Covers benchmarking and metrology for 3D printing