Fuzzy Mathematical Approach to Pattern Recognition


Book Description

This book aims to present results of investigations, both experimental and theoretical, into the effectiveness of fuzzy algorithms as classification tools in some problems concerned with the field of pattern recognition and image processing. Compares results to those obtained with statistical classification techniques.




Soft Computing Approach to Pattern Recognition and Image Processing


Book Description

This volume provides a collection of sixteen articles containing review and new material. In a unified way, they describe the recent development of theories and methodologies in pattern recognition, image processing and vision using fuzzy logic, artificial neural networks, genetic algorithms, rough sets and wavelets with significant real life applications. The book details the theory of granular computing and the role of a rough-neuro approach as a way of computing with words and designing intelligent recognition systems. It also demonstrates applications of the soft computing paradigm to case based reasoning, data mining and bio-informatics with a scope for future research. The contributors from around the world present a balanced mixture of current theory, algorithms and applications, making the book an extremely useful resource for students and researchers alike. Contents: Pattern Recognition: Multiple Classifier Systems; Building Decision Trees from the Fourier Spectrum of a Tree Ensemble; Clustering Large Data Sets; Multi-objective Variable String Genetic Classifier: Application to Remote Sensing Imagery; Image Processing and Vision: Dissimilarity Measures Between Fuzzy Sets or Fuzzy Structures; Early Vision: Concepts and Algorithms; Self-organizing Neural Network for Multi-level Image Segmentation; Geometric Transformation by Moment Method with Wavelet Matrix; New Computationally Efficient Algorithms for Video Coding; Soft Computing for Computational Media Aesthetics: Analyzing Video Content for Meaning; Granular Computing and Case Based Reasoning: Towards Granular Multi-agent Systems; Granular Computing and Pattern Recognition; Case Base Maintenance: A Soft Computing Perspective; Real Life Applications: Autoassociative Neural Network Models for Pattern Recognition Tasks in Speech and Image; Protein Structure Prediction Using Soft Computing; Pattern Classification for Biological Data Mining. Readership: Upper level undergraduates, graduates, researchers, academics and industrialists.




Introduction To Pattern Recognition: Statistical, Structural, Neural And Fuzzy Logic Approaches


Book Description

This book is an introduction to pattern recognition, meant for undergraduate and graduate students in computer science and related fields in science and technology. Most of the topics are accompanied by detailed algorithms and real world applications. In addition to statistical and structural approaches, novel topics such as fuzzy pattern recognition and pattern recognition via neural networks are also reviewed. Each topic is followed by several examples solved in detail. The only prerequisites for using this book are a one-semester course in discrete mathematics and a knowledge of the basic preliminaries of calculus, linear algebra and probability theory.




Pattern Recognition with Fuzzy Objective Function Algorithms


Book Description

The fuzzy set was conceived as a result of an attempt to come to grips with the problem of pattern recognition in the context of imprecisely defined categories. In such cases, the belonging of an object to a class is a matter of degree, as is the question of whether or not a group of objects form a cluster. A pioneering application of the theory of fuzzy sets to cluster analysis was made in 1969 by Ruspini. It was not until 1973, however, when the appearance of the work by Dunn and Bezdek on the Fuzzy ISODATA (or fuzzy c-means) algorithms became a landmark in the theory of cluster analysis, that the relevance of the theory of fuzzy sets to cluster analysis and pattern recognition became clearly established. Since then, the theory of fuzzy clustering has developed rapidly and fruitfully, with the author of the present monograph contributing a major share of what we know today. In their seminal work, Bezdek and Dunn have introduced the basic idea of determining the fuzzy clusters by minimizing an appropriately defined functional, and have derived iterative algorithms for computing the membership functions for the clusters in question. The important issue of convergence of such algorithms has become much better understood as a result of recent work which is described in the monograph.




Pattern Recognition Algorithms for Data Mining


Book Description

This valuable text addresses different pattern recognition (PR) tasks in a unified framework with both theoretical and experimental results. Tasks covered include data condensation, feature selection, case generation, clustering/classification, and rule generation and evaluation. Organized into eight chapters, the book begins by introducing PR, data mining, and knowledge discovery concepts. The authors proceed to analyze the tasks of multi-scale data condensation and dimensionality reduction. Then they explore the problem of learning with support vector machine (SVM), and conclude by highlighting the significance of granular computing for different mining tasks in a soft paradigm.




Rough-Fuzzy Pattern Recognition


Book Description

Learn how to apply rough-fuzzy computing techniques to solve problems in bioinformatics and medical image processing Emphasizing applications in bioinformatics and medical image processing, this text offers a clear framework that enables readers to take advantage of the latest rough-fuzzy computing techniques to build working pattern recognition models. The authors explain step by step how to integrate rough sets with fuzzy sets in order to best manage the uncertainties in mining large data sets. Chapters are logically organized according to the major phases of pattern recognition systems development, making it easier to master such tasks as classification, clustering, and feature selection. Rough-Fuzzy Pattern Recognition examines the important underlying theory as well as algorithms and applications, helping readers see the connections between theory and practice. The first chapter provides an introduction to pattern recognition and data mining, including the key challenges of working with high-dimensional, real-life data sets. Next, the authors explore such topics and issues as: Soft computing in pattern recognition and data mining A mathematical framework for generalized rough sets, incorporating the concept of fuzziness in defining the granules as well as the set Selection of non-redundant and relevant features of real-valued data sets Selection of the minimum set of basis strings with maximum information for amino acid sequence analysis Segmentation of brain MR images for visualization of human tissues Numerous examples and case studies help readers better understand how pattern recognition models are developed and used in practice. This text—covering the latest findings as well as directions for future research—is recommended for both students and practitioners working in systems design, pattern recognition, image analysis, data mining, bioinformatics, soft computing, and computational intelligence.




Pattern Recognition


Book Description

This volume, containing contributions by experts from all over the world, is a collection of 21 articles which present review and research material describing the evolution and recent developments of various pattern recognition methodologies, ranging from statistical, syntactic/linguistic, fuzzy-set-theoretic, neural, genetic-algorithmic and rough-set-theoretic to hybrid soft computing, with significant real-life applications. In addition, the book describes efficient soft machine learning algorithms for data mining and knowledge discovery. With a balanced mixture of theory, algorithms and applications, as well as up-to-date information and an extensive bibliography, Pattern Recognition: From Classical to Modern Approaches is a very useful resource.




Soft Computing Approach Pattern Recognition And Image Processing


Book Description

This volume provides a collection of sixteen articles containing review and new material. In a unified way, they describe the recent development of theories and methodologies in pattern recognition, image processing and vision using fuzzy logic, artificial neural networks, genetic algorithms, rough sets and wavelets with significant real life applications.The book details the theory of granular computing and the role of a rough-neuro approach as a way of computing with words and designing intelligent recognition systems. It also demonstrates applications of the soft computing paradigm to case based reasoning, data mining and bio-informatics with a scope for future research.The contributors from around the world present a balanced mixture of current theory, algorithms and applications, making the book an extremely useful resource for students and researchers alike.




Pattern Recognition in Soft Computing Paradigm


Book Description

Pattern recognition (PR) consists of three important tasks: feature analysis, clustering and classification. Image analysis can also be viewed as a PR task. Feature analysis is a very important step in designing any useful PR system because its effectiveness depends heavily on the set of features used to realise the system.A distinguishing feature of this volume is that it deals with all three aspects of PR, namely feature analysis, clustering and classifier design. It also encompasses image processing methodologies and image retrieval with subjective information. The other interesting aspect of the volume is that it covers all three major facets of soft computing: fuzzy logic, neural networks and evolutionary computing.




Soft Computing Approach to Pattern Classification and Object Recognition


Book Description

Soft Computing Approach to Pattern Classification and Object Recognition establishes an innovative, unified approach to supervised pattern classification and model-based occluded object recognition. The book also surveys various soft computing tools, fuzzy relational calculus (FRC), genetic algorithm (GA) and multilayer perceptron (MLP) to provide a strong foundation for the reader. The supervised approach to pattern classification and model-based approach to occluded object recognition are treated in one framework , one based on either a conventional interpretation or a new interpretation of multidimensional fuzzy implication (MFI) and a novel notion of fuzzy pattern vector (FPV). By combining practice and theory, a completely independent design methodology was developed in conjunction with this supervised approach on a unified framework, and then tested thoroughly against both synthetic and real-life data. In the field of soft computing, such an application-oriented design study is unique in nature. The monograph essentially mimics the cognitive process of human decision making, and carries a message of perceptual integrity in representational diversity. Soft Computing Approach to Pattern Classification and Object Recognition is intended for researchers in the area of pattern classification and computer vision. Other academics and practitioners will also find the book valuable.