Fuzzy Sets in the Management of Uncertainty


Book Description

Fuzzy Sets in the Management of Uncertainty presents an overview of current problems in business management, primarily for those situations involving decision making of an economic-financial nature. The monograph therefore discusses problems of planning, programming, control and brings light to the entire financial network in its three phases: raising funds, analysis and investment. Special attention is paid to production processes and marketing of products and services. This monograph is a highly readable overview and introduction for scientists, professionals, graduate students, managers and consultants in the growing field of applications and fuzzy logic in the field of management.




Uncertainty Management with Fuzzy and Rough Sets


Book Description

This book offers a timely overview of fuzzy and rough set theories and methods. Based on selected contributions presented at the International Symposium on Fuzzy and Rough Sets, ISFUROS 2017, held in Varadero, Cuba, on October 24-26, 2017, the book also covers related approaches, such as hybrid rough-fuzzy sets and hybrid fuzzy-rough sets and granular computing, as well as a number of applications, from big data analytics, to business intelligence, security, robotics, logistics, wireless sensor networks and many more. It is intended as a source of inspiration for PhD students and researchers in the field, fostering not only new ideas but also collaboration between young researchers and institutions and established ones.




Fuzzy Sets in Management, Economics, and Marketing


Book Description

The rapid changes that have taken place globally on the economic, social and business fronts characterized the 20th century. The magnitude of these changes has formed an extremely complex and unpredictable decision-making framework, which is difficult to model through traditional approaches. The main purpose of this book is to present the most recent advances in the development of innovative techniques for managing the uncertainty that prevails in the global economic and management environments. These techniques originate mainly from fuzzy sets theory. However, the book also explores the integration of fuzzy sets with other decision support and modeling disciplines, such as multicriteria decision aid, neural networks, genetic algorithms, machine learning, chaos theory, etc. The presentation of the advances in these fields and their real world applications adds a new perspective to the broad fields of management science and economics. Contents: Decision Making, Management and Marketing: Algorithms for Orderly Structuring of Financial OC ObjectsOCO (J Gil-Aluja); A Fuzzy Goal Programming Model for Evaluating a Hospital Service Performance (M Arenas et al.); A Group Decision Making Method Using Fuzzy Triangular Numbers (J L Garc a-Lapresta et al.); Developing Sorting Models Using Preference Disaggregation Analysis: An Experimental Investigation (M Doumpos & C Zopounidis); Stock Markets and Portfolio Management: The Causality Between Interest Rate, Exchange Rate and Stock Price in Emerging Markets: The Case of the Jakarta Stock Exchange (J Gupta et al.); Fuzzy Cognitive Maps in Stock Market (D Koulouriotis et al.); Neural Network vs Linear Models of Stock Returns: An Application to the UK and German Stock Market Indices (A Kanas); Corporate Finance and Banking Management: Expertons and Behaviour of Companies with Regard to the Adequacy Between Business Decisions and Objectives (A Couturier & B Fioleau); Multiple Fuzzy IRR in the Financial Decision Environment (S F Gonzilez et al.); An Automated Knowledge Generation Approach for Managing Credit Scoring Problems (M Michalopoulos et al.); and other papers. Readership: Financial managers, economists, management scientists and computer scientists."




Fuzzy Sets, Fuzzy Logic, And Fuzzy Systems: Selected Papers By Lotfi A Zadeh


Book Description

This book consists of selected papers written by the founder of fuzzy set theory, Lotfi A Zadeh. Since Zadeh is not only the founder of this field, but has also been the principal contributor to its development over the last 30 years, the papers contain virtually all the major ideas in fuzzy set theory, fuzzy logic, and fuzzy systems in their historical context. Many of the ideas presented in the papers are still open to further development. The book is thus an important resource for anyone interested in the areas of fuzzy set theory, fuzzy logic, and fuzzy systems, as well as their applications. Moreover, the book is also intended to play a useful role in higher education, as a rich source of supplementary reading in relevant courses and seminars.The book contains a bibliography of all papers published by Zadeh in the period 1949-1995. It also contains an introduction that traces the development of Zadeh's ideas pertaining to fuzzy sets, fuzzy logic, and fuzzy systems via his papers. The ideas range from his 1965 seminal idea of the concept of a fuzzy set to ideas reflecting his current interest in computing with words — a computing in which linguistic expressions are used in place of numbers.Places in the papers, where each idea is presented can easily be found by the reader via the Subject Index.




Uncertainty Management in Information Systems


Book Description

As its title suggests, "Uncertainty Management in Information Systems" is a book about how information systems can be made to manage information permeated with uncertainty. This subject is at the intersection of two areas of knowledge: information systems is an area that concentrates on the design of practical systems that can store and retrieve information; uncertainty modeling is an area in artificial intelligence concerned with accurate representation of uncertain information and with inference and decision-making under conditions infused with uncertainty. New applications of information systems require stronger capabilities in the area of uncertainty management. Our hope is that lasting interaction between these two areas would facilitate a new generation of information systems that will be capable of servicing these applications. Although there are researchers in information systems who have addressed themselves to issues of uncertainty, as well as researchers in uncertainty modeling who have considered the pragmatic demands and constraints of information systems, to a large extent there has been only limited interaction between these two areas. As the subtitle, "From Needs to Solutions," indicates, this book presents view points of information systems experts on the needs that challenge the uncer tainty capabilities of present information systems, and it provides a forum to researchers in uncertainty modeling to describe models and systems that can address these needs.




Rough Sets, Fuzzy Sets and Knowledge Discovery


Book Description

The objective of this book is two-fold. Firstly, it is aimed at bringing to gether key research articles concerned with methodologies for knowledge discovery in databases and their applications. Secondly, it also contains articles discussing fundamentals of rough sets and their relationship to fuzzy sets, machine learning, management of uncertainty and systems of logic for formal reasoning about knowledge. Applications of rough sets in different areas such as medicine, logic design, image processing and expert systems are also represented. The articles included in the book are based on selected papers presented at the International Workshop on Rough Sets and Knowledge Discovery held in Banff, Canada in 1993. The primary methodological approach emphasized in the book is the mathematical theory of rough sets, a relatively new branch of mathematics concerned with the modeling and analysis of classification problems with imprecise, uncertain, or incomplete information. The methods of the theory of rough sets have applications in many sub-areas of artificial intelligence including knowledge discovery, machine learning, formal reasoning in the presence of uncertainty, knowledge acquisition, and others. This spectrum of applications is reflected in this book where articles, although centered around knowledge discovery problems, touch a number of related issues. The book is intended to provide an important reference material for students, researchers, and developers working in the areas of knowledge discovery, machine learning, reasoning with uncertainty, adaptive expert systems, and pattern classification.




Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations


Book Description

This three volume set (CCIS 853-855) constitutes the proceedings of the 17th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2017, held in Cádiz, Spain, in June 2018. The 193 revised full papers were carefully reviewed and selected from 383 submissions. The papers are organized in topical sections on advances on explainable artificial intelligence; aggregation operators, fuzzy metrics and applications; belief function theory and its applications; current techniques to model, process and describe time series; discrete models and computational intelligence; formal concept analysis and uncertainty; fuzzy implication functions; fuzzy logic and artificial intelligence problems; fuzzy mathematical analysis and applications; fuzzy methods in data mining and knowledge discovery; fuzzy transforms: theory and applications to data analysis and image processing; imprecise probabilities: foundations and applications; mathematical fuzzy logic, mathematical morphology; measures of comparison and entropies for fuzzy sets and their extensions; new trends in data aggregation; pre-aggregation functions and generalized forms of monotonicity; rough and fuzzy similarity modelling tools; soft computing for decision making in uncertainty; soft computing in information retrieval and sentiment analysis; tri-partitions and uncertainty; decision making modeling and applications; logical methods in mining knowledge from big data; metaheuristics and machine learning; optimization models for modern analytics; uncertainty in medicine; uncertainty in Video/Image Processing (UVIP).




Fuzzy Logic in Management


Book Description

This book shows how the application of fuzzy logic can benefit management, group decision making, strategic planning, supply chain management and other business imperatives. The theoretical analysis is fully supported by real-life case studies. The book develops themes that businesses can use to master effectiveness and quality, work with flexibility, and support continuous learning in the organization and the individual.




Uncertainty Theory


Book Description

This book provides a self-contained, comprehensive and up-to-date presentation of uncertainty theory. The purpose is to equip the readers with an axiomatic approach to deal with uncertainty. For this new edition the entire text has been totally rewritten. The chapters on chance theory and uncertainty theory are completely new. Mathematicians, researchers, engineers, designers, and students will find this work a stimulating and useful reference.




Information Processing and Management of Uncertainty in Knowledge-Based Systems


Book Description

This three volume set (CCIS 1237-1239) constitutes the proceedings of the 18th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2020, in June 2020. The conference was scheduled to take place in Lisbon, Portugal, at University of Lisbon, but due to COVID-19 pandemic it was held virtually. The 173 papers were carefully reviewed and selected from 213 submissions. The papers are organized in topical sections: homage to Enrique Ruspini; invited talks; foundations and mathematics; decision making, preferences and votes; optimization and uncertainty; games; real world applications; knowledge processing and creation; machine learning I; machine learning II; XAI; image processing; temporal data processing; text analysis and processing; fuzzy interval analysis; theoretical and applied aspects of imprecise probabilities; similarities in artificial intelligence; belief function theory and its applications; aggregation: theory and practice; aggregation: pre-aggregation functions and other generalizations of monotonicity; aggregation: aggregation of different data structures; fuzzy methods in data mining and knowledge discovery; computational intelligence for logistics and transportation problems; fuzzy implication functions; soft methods in statistics and data analysis; image understanding and explainable AI; fuzzy and generalized quantifier theory; mathematical methods towards dealing with uncertainty in applied sciences; statistical image processing and analysis, with applications in neuroimaging; interval uncertainty; discrete models and computational intelligence; current techniques to model, process and describe time series; mathematical fuzzy logic and graded reasoning models; formal concept analysis, rough sets, general operators and related topics; computational intelligence methods in information modelling, representation and processing.