Gallium Nitride and Related Materials II: Volume 468


Book Description

This book from MRS dedicated to III-Nitrides, focuses on developments in AlN, GaN, InN and their alloys that are now finding application in short-wavelength lasers (~400nm, cw at room temperature) and high-power electronics (2.8W/mm at GHz). Experts from fields including crystal growth, condensed matter theory, source chemistry, device processing and device design come together in the volume to address issues of both scientific and technological relevance. And while much of the book reports on advances in material preparation and the understanding of defect issues, similar advances in material and device processing are also reported. Topics include: growth and doping; substrates and substrate effects; characterization; processing and device performance and design.




GaN-based Materials and Devices


Book Description

The unique materials properties of GaN-based semiconductors have stimulated a great deal of interest in research and development regarding nitride materials growth and optoelectronic and nitride-based electronic devices. High electron mobility and saturation velocity, high sheet carrier concentration at heterojunction interfaces, high breakdown field, and low thermal impedance of GaN-based films grown over SiC or bulk AlN substrates make nitride-based electronic devices very promising. The chemical inertness of nitrides is another key property.This volume, written by experts on different aspects of nitride technology, addresses the entire spectrum of issues related to nitride materials and devices, and it will be useful for technologists, scientists, engineers, and graduate students who are working on wide bandgap materials and devices. The book can also be used as a supplementary text for graduate courses on wide bandgap semiconductor technology.




III-Nitride Semiconductors


Book Description

Research advances in III-nitride semiconductor materials and device have led to an exponential increase in activity directed towards electronic and optoelectronic applications. There is also great scientific interest in this class of materials because they appear to form the first semiconductor system in which extended defects do not severely affect the optical properties of devices. The volume consists of chapters written by a number of leading researchers in nitride materials and device technology with the emphasis on the dopants incorporations, impurities identifications, defects engineering, defects characterization, ion implantation, irradiation-induced defects, residual stress, structural defects and phonon confinement. This unique volume provides a comprehensive review and introduction of defects and structural properties of GaN and related compounds for newcomers to the field and stimulus to further advances for experienced researchers. Given the current level of interest and research activity directed towards nitride materials and devices, the publication of the volume is particularly timely. Early pioneering work by Pankove and co-workers in the 1970s yielded a metal-insulator-semiconductor GaN light-emitting diode (LED), but the difficulty of producing p-type GaN precluded much further effort. The current level of activity in nitride semiconductors was inspired largely by the results of Akasaki and co-workers and of Nakamura and co-workers in the late 1980s and early 1990s in the development of p-type doping in GaN and the demonstration of nitride-based LEDs at visible wavelengths. These advances were followed by the successful fabrication and commercialization of nitride blue laser diodes by Nakamura et al at Nichia. The chapters contained in this volume constitutes a mere sampling of the broad range of research on nitride semiconductor materials and defect issues currently being pursued in academic, government, and industrial laboratories worldwide.







Encyclopedia of Plasma Technology - Two Volume Set


Book Description

Technical plasmas have a wide range of industrial applications. The Encyclopedia of Plasma Technology covers all aspects of plasma technology from the fundamentals to a range of applications across a large number of industries and disciplines. Topics covered include nanotechnology, solar cell technology, biomedical and clinical applications, electronic materials, sustainability, and clean technologies. The book bridges materials science, industrial chemistry, physics, and engineering, making it a must have for researchers in industry and academia, as well as those working on application-oriented plasma technologies. Also Available Online This Taylor & Francis encyclopedia is also available through online subscription, offering a variety of extra benefits for researchers, students, and librarians, including: Citation tracking and alerts Active reference linking Saved searches and marked lists HTML and PDF format options Contact Taylor and Francis for more information or to inquire about subscription options and print/online combination packages. US: (Tel) 1.888.318.2367; (E-mail) [email protected] International: (Tel) +44 (0) 20 7017 6062; (E-mail) [email protected]




Naval Research Reviews


Book Description













Low-dimensional Nitride Semiconductors


Book Description

Optoelectronics and electronics of the years to come are likely to change dramatically. Most of the outdoor lighting systems will be replaced by light-emitting diodes that operate in the whole visible part of the electromagnatic spectrum. Transistors operating at high frequency and with high power are under development and likely to hit the market very rapidly. Compact solid-state lasers that operate in the near-ultraviolet range are going to be utilized for such widely used applications as read-write tasks in printer and CD drives. Ultraviolet detectors will be used at a wide scale for many application, ranging from flame detectors to medical instruments. This book concerns itself with the questions why nitride semiconductors are so promising over such a wide range of applications, what the current issues are in the research laboratories, and what the prospects of new electronic devices are in the dawn of the twenty-first century.