Gamma Titanium Aluminide Alloys


Book Description

The first book entirely dedicated to the topic emphasizes the relation between basic research and actual processing technologies. As such, it covers complex microstructures down to the nanometer scale, structure/property relationships and potential applications in key industries. From the contents: * Constitution * Thermophysical Constants * Phase Transformations and Microstructures * Deformation Behaviour * Strengthening Mechanisms * Creep * Fracture Behaviour * Fatigue * Oxidation Resistance and Related Issues * Alloy Design * Ingot Production and Component Casting * Powder Metallurgy * Wrought Processing * Joining * Surface Hardening * Applications and Component Assessment




Gamma Titanium Aluminides 2003


Book Description

A March 2003 meeting provided a forum for scientists to share information on progress in gamma TiAl alloys. Selected papers from the meeting, 77 in all, are presented here, and cover applications, fundamentals, alloy design and development, processing, joining, microstructure-property evaluation, an




Gamma Titanium Aluminides


Book Description

This two-volume publication is a comprehensive update of the fundamental and practical issues confronting the research, development and application of gamma titanium aluminides.




Gamma Titanium Aluminide Alloys


Book Description

The first book entirely dedicated to the topic emphasizes the relation between basic research and actual processing technologies. As such, it covers complex microstructures down to the nanometer scale, structure/property relationships and potential applications in key industries. From the contents: * Constitution * Thermophysical Constants * Phase Transformations and Microstructures * Deformation Behaviour * Strengthening Mechanisms * Creep * Fracture Behaviour * Fatigue * Oxidation Resistance and Related Issues * Alloy Design * Ingot Production and Component Casting * Powder Metallurgy * Wrought Processing * Joining * Surface Hardening * Applications and Component Assessment




Titanium Alloys


Book Description

Given their growing importance in the aerospace, automotive, sports and medical sectors, modelling the microstructure and properties of titanium and its alloys is a vital part of research into the development of new applications. This is the first time a book has been dedicated to modelling techniques for titanium.Part one discusses experimental techniques such as microscopy, synchrotron radiation X-ray diffraction and differential scanning calorimetry. Part two reviews physical modelling methods including thermodynamic modelling, the Johnson-Mehl-Avrami method, finite element modelling, the phase-field method, the cellular automata method, crystallographic and fracture behaviour of titanium aluminide and atomistic simulations of interfaces and dislocations relevant to TiAl. Part three covers neural network models and Part four examines surface engineering products. These include surface nitriding: phase composition, microstructure, mechanical properties, morphology and corrosion; nitriding: modelling of hardness profiles and kinetics; and aluminising: fabrication of Ti coatings by mechanical alloying.With its distinguished authors, Titanium alloys: Modelling of microstructure, properties and applications is a standard reference for industry and researchers concerned with titanium modelling, as well as users of titanium, titanium alloys and titanium aluminide in the aerospace, automotive, sports and medical implant sectors. - Comprehensively assesses modelling techniques for titanium, including experimental techniques such as microscopy and differential scanning calorimetry - Reviews physical modelling methods including thermodynamic modelling and finite element modelling - Examines surface engineering products with specific chapters focused on surface nitriding and aluminising




Dynamic Fracture Mechanics


Book Description

Covering a wide variety of topics in dynamic fracture mechanics, this volume presents state-of-the-art experimental techniques and theoretical analysis on dynamic fracture in standard and exotic materials. Written by world renowned researchers, this valuable compendium contains eleven chapters on crack initiation, crack propagation, crack arrest, crack-stress wave interactions, and experimental, analytical and numerical methods in dynamic fracture mechanics. Contents: Modeling Dynamic Fracture Using Large-Scale Atomistic Simulations (H-J Gao & M J Buehler); Dynamic Crack Initiation Toughness (D Rittel); The Dynamics of Rapidly Moving Tensile Cracks in Brittle Amorphous Material (J Fineberg); Optical Methods for Dynamic Fracture Mechanics (H V Tippur); On the Use of Strain Gages in Dynamic Fracture (V Parameswaran & A Shukla); Dynamic and Crack Arrest Fracture Toughness (R E Link & R Chona); Dynamic Fracture in Graded Materials (A Shukla & N Jain); Dynamic Fracture Initiation Toughness at Elevated Temperatures with Application to the New Generation of Titanium Aluminides Alloys (M Shazly et al.); Dynamic Fracture of Nanocomposite Materials (A Shukla et al.). Readership: Researchers, practitioners, and graduate students in fracture mechanics and materials science.




Joining of Titanium


Book Description

This report supplies information on joining processes applicable to titanium and its alloys in sheet metal applications, primarily related directly to airframe construction. Although the material presented here does not cover all titanium joining processes, and omits such processes as plasma-arc, submerged-arc, electroslag, flash, and high-frequency resistance welding, the data presented cover materials up to 2-inches thick in some cases and the report should be useful to anyone seeking titanium joining information. The joining processes covered fall into five categories: welding, brazing, metallurgical bonding (diffusion and deformation bonding), adhesive bonding, and mechanical fastening. The fusion welding processes that are discussed in detail include gas tungsten arc, gas metal arc, arc spot, and electron beam. The resistance processes give extended coverage are spot, roll spot, and seam welding. (Author).




Titanium and Titanium Alloys


Book Description

This handbook is an excellent reference for materials scientists and engineers needing to gain more knowledge about these engineering materials. Following introductory chapters on the fundamental materials properties of titanium, readers will find comprehensive descriptions of the development, processing and properties of modern titanium alloys. There then follows detailed discussion of the applications of titanium and its alloys in aerospace, medicine, energy and automotive technology.




Gamma Titanium Aluminide Alloys 2014


Book Description

This book is a collection of papers presented at the 4th International Symposium on Gamma TiAl Alloys (ISGTA 2014) that was held in conjunction with the 2014 Annual Meeting of The Minerals, Metals & Materials Society. Papers discuss and assess advances in application and implementation experience in current alloys, fundamental aspects in current gamma alloy materials technology, new processes development and assessment, and emerging new alloys, their potentials and limitations, and breakthroughs. Papers that originated in the panel discussion of the symposium are intended to help the scientific community realize the limitations of current alloys materials and processes and discuss possible solutions. Six topic areas selected for this purpose included: Wrought-processed alloys: status, dilemmas and pathways to future Cast alloys for aero engine applications: status, issues, and barriers to advances Cast alloys for turbocharger wheels: status and barriers to widespread applications Emerging new alloys: justification, potentials, status, and future Novel processes: justification, potential vs. realization issues, and future Future applications and realistic pathways to them




Handbook of Hot-dip Galvanization


Book Description

Hot-dip galvanization is a method for coating steel workpieces with a protective zinc film to enhance the corrosion resistance and to improve the mechanical material properties. Hot-dip galvanized steel is the material of choice underlying many modern buildings and constructions, such as train stations, bridges and metal domes. Based on the successful German version, this edition has been adapted to include international standards, regulations and best practices. The book systematically covers all steps in hot-dip galvanization: surface pre-treatment, process and systems technology, environmental issues, and quality management. As a result, the reader finds the fundamentals as well as the most important aspects of process technology and technical equipment, alongside contributions on workpiece requirements for optimal galvanization results and methods for applying additional protective coatings to the galvanized pieces. With over 200 illustrated examples, step-by-step instructions, presentations and reference tables, this is essential reading for apprentices and professionals alike.