Gas Hydrate in Water Treatment


Book Description

GAS HYDRATE IN WATER TREATMENT Explores current progress in the expanding field of gas hydrate-based desalination As potable water shortages continue to affect billions of people worldwide, seawater desalination and wastewater treatment have the potential to meet freshwater demands in the near future. Gas hydrate-based desalination, a process which requires CO2 and water as solvent, has become an increasingly popular approach—desalination with hydrates is environmentally friendly and can produce cheaper desalted water than other existing conventional technologies. Gas Hydrate in Water Treatment: Technological, Economic, and Industrial Aspects provides detailed, up-to-date reference to the application of gas hydrates in wastewater and seawater desalination treatment. Edited by experienced researchers in the field, this comprehensive volume describes the fundamental aspects of desalination and summarizes the latest research on gas hydrate-based desalination. The authors address a broad range of key topics, including issues related to water scarcity, post-treatment of desalinated water using both conventional and new technologies, hydrate-based desalination methods driven by renewable energy sources, and more. Provides thorough coverage of the technological, waste brine management, economic, and renewable energy and remineralization aspects of gas hydrate-based wastewater treatment Describes the energetic, economic, and environmental impact of gas hydrate desalination Explains the core concepts of gas hydrate-based desalination to help readers evaluate the performance of existing desalination processes Discusses the advantages and challenges of hydrate-based water treatment Compares conventional and gas hydrate technologies used in water treatment Reviews the most recent research in gas hydrate-based desalination Gas Hydrate in Water Treatment: Technological, Economic, and Industrial Aspects is an essential resource for all academics, researchers, process engineers, designers, industry professionals, and advanced students in the field.




Chemical Additives for Gas Hydrates


Book Description

This book offers a straightforward, informative guide to the chemicals used for gas hydrate formation and inhibition, providing the reader with the latest information on the definition, structure, formation conditions, problems, and applications of gas hydrates. The authors review not only the inhibitors used to prevent or mitigate hydrate formation, but also the conditions under which it is necessary to form hydrates quickly, which require the use of promoters. Various promoters are discussed, including their specifications, functions, advantages and disadvantages. The possibility of using natural reservoirs of gas hydrate as an energy source is also considered. Lastly, due to the difficulty of conducting experiments that reflect all conditions and concentrations, the book presents a number of models that can predict the basic parameters in the presence of the chemicals. Given its scope, the book will be of interest to professionals working in this field in an industrial context, as well as to researchers, undergraduate and graduate students of chemical engineering.




Natural Gas Hydrates


Book Description

Natural Gas Hydrates, Fourth Edition, provides a critical reference for engineers who are new to the field. Covering the fundamental properties, thermodynamics and behavior of hydrates in multiphase systems, this reference explains the basics before advancing to more practical applications, the latest developments and models. Updated sections include a new hydrate toolbox, updated correlations and computer methods. Rounding out with new case study examples, this new edition gives engineers an important tool to continue to control and mitigate hydrates in a safe and effective manner. - Presents an updated reference with structured comparisons on hydrate calculation methods that are supported by practical case studies and a current list of inhibitor patents - Provides a comprehensive understanding of new hydrate management strategies, particularly for multiphase pipeline operations - Covers future challenges, such as carbon sequestration with simultaneous production of methane from hydrates




Economic Geology of Natural Gas Hydrate


Book Description

This book is a companion to “Natural Gas Hydrate in Oceanic and Permafrost Environments” (Max, 2000, 2003), which is the first book on gas hydrate in this series. Although other gases can naturally form clathrate hydrates (referred to after as ‘hydrate’), we are concerned here only with hydrocarbon gases that form hydrates. The most important of these natural gases is methane. Whereas the first book is a general introduction to the subject of natural gas hydrate, this book focuses on the geology and geochemical controls of gas hydrate development and on gas extraction from naturally occurring hydrocarbon hydrates. This is the first broad treatment of gas hydrate as a natural resource within an economic geological framework. This book is written mainly to stand alone for brevity and to minimize duplication. Information in Max (2000; 2003) should also be consulted for completeness. Hydrate is a type of clathrate (Sloan, 1998) that is formed from a cage structure of water molecules in which gas molecules occupying void sites within the cages stabilize the structure through van der Waals or hydrogen bonding.




Gas Hydrates 1


Book Description

Gas hydrates, or clathrate hydrates, are crystalline solids resembling ice, in which small (guest) molecules, typically gases, are trapped inside cavities formed by hydrogen-bonded water (host) molecules. They form and remain stable under low temperatures – often well below ambient conditions – and high pressures ranging from a few bar to hundreds of bar, depending on the guest molecule. Their presence is ubiquitous on Earth, in deep-marine sediments and in permafrost regions, as well as in outer space, on planets or comets. In addition to water, they can be synthesized with organic species as host molecules, resulting in milder stability conditions: these are referred to as semi-clathrate hydrates. Clathrate and semi-clathrate hydrates are being considered for applications as diverse as gas storage and separation, cold storage and transport and water treatment. This book is the first of two edited volumes, with chapters on the experimental and modeling tools used for characterizing and predicting the unique molecular, thermodynamic and kinetic properties of gas hydrates (Volume 1) and on gas hydrates in their natural environment and for potential industrial applications (Volume 2).




Hydrates of Hydrocarbons


Book Description

Hydrates of Hydrocarbons is the first book to address methods of hydrate removal and, most importantly, prevention of hydrate build-up. The book provides solutions formulated for drilling, pipeline, and chemical engineers in both the onshore and offshore environments, as well as educators in advanced petroleum and chemical engineering courses. It also offers timely information on the use of hydrate properties in new technologies and the production of gas from natural gas hydrate deposits.




Surfactants in Upstream E&P


Book Description

This edited book explores the use of surfactants in upstream exploration and production (E&P). It provides a molecular, mechanistic and application-based approach to the topic, utilising contributions from the leading researchers in the field of organic surfactant chemistry and surfactant chemistry for upstream E&P. The book covers a wide range of problems in enhanced oil recovery and surfactant chemistry which have a large importance in drilling, fracking, hydrate inhibition and conformance. It begins by discussing the fundamentals of surfactants and their synthesis. It then moves on to present their applicability to a variety of situations such as gas injections, shale swelling inhibition, and acid stimulation. This book presents research in an evolving field, making it interesting to academics, postgraduate students, and experts within the field of oil and gas.




Advances in Natural Gas: Formation, Processing, and Applications. Volume 3: Natural Gas Hydrates


Book Description

Advances in Natural Gas: Formation, Processing, and Applications. Volume 3: Natural Gas Hydrates comprises an extensive eight-volume series delving into the intricate realms of both the theoretical fundamentals and practical methodologies associated with the various facets of natural gas. Encompassing the entire spectrum from exploration and extraction to synthesis, processing, purification, and the generation of valuable chemicals and energy, these volumes also navigate through the complexities of transportation, storage challenges, hydrate formation, extraction, and prevention. In Volume 3 titled Natural Gas Hydrates, the fundamental aspects of natural gas hydrates, their associated disasters, and case studies are introduced. This book delves into the intricate details of hydrate structures, physio-chemical properties, and thermodynamics, offering a comprehensive understanding. This volume also explores hydrates as an energy source and covers their dissociation methods. A significant focus is placed on the challenges of natural gas hydrates formation in pipelines, accompanied by prevention techniques. Additionally, this book discusses the discovery and extraction of natural gas hydrates from oceans, shedding light on related geophysical indicators. - Introduces characteristics and properties of natural gas hydrates - Describes pipeline natural gas hydrates and prevention methods - Discusses oceanic natural gas hydrates and extraction methods




Gas Hydrates 2


Book Description

Gas hydrates in their natural environment and for potential industrial applications (Volume 2).




Removal of Refractory Pollutants from Wastewater Treatment Plants


Book Description

This book discusses new and innovative trends and techniques in the removal of toxic and or refractory pollutants through various environmental biotechnological processes from wastewater, both at the laboratory and industrial scale. It focuses primarily on environmentally-friendly technologies which respect the principles of sustainable development, including the advanced trends in remediation through an approach of environmental biotechnological processes from either industrial or sewage wastewater. Features: Examines the fate and occurrence of refractory pollutants in wastewater treatment plants (WWTPs) and the potential approaches for their removal. Highlights advanced remediation procedures involving various microbiological and biochemical processes. Assesses and compares the potential application of numerous existing treatment techniques and introduces new, emerging technologies. Removal of Refractory Pollutants from Wastewater Treatment Plants is suitable for practicing engineers, researchers, water utility managers, and students who seek an excellent introduction and basic knowledge in the principles of environmental bioremediation technologies.