Gas Turbine Combustion


Book Description

Reflecting the developments in gas turbine combustion technology that have occurred in the last decade, Gas Turbine Combustion: Alternative Fuels and Emissions, Third Edition provides an up-to-date design manual and research reference on the design, manufacture, and operation of gas turbine combustors in applications ranging from aeronautical to po










Fuel Effects on Operability of Aircraft Gas Turbine Combustors


Book Description

In summarizing the results obtained in the first five years of the National Jet Fuel Combustion Program (NJFCP), this book demonstrates that there is still much to be learned about the combustion of alternative jet fuels.







Combustion Characteristics of Alternative Liquid Fuels


Book Description

Envisaged application of biodiesel in gas turbine engines or furnaces requires extensive tests on the deflagration properties of biodiesel. The laminar flame speeds of Palm Methyl Esters (PME) and blends of PME with conventional fuels are determined using the jet-wall stagnation flame configuration. The same technique is also used to measure the laminar flame speed of diesel, Jet-A1, n-heptane, acetone, methane and methane/acetone. The spray atomization characteristics of a plain-jet airblast atomizer are investigated using a phase Doppler anemometry (PDA) under non-reacting conditions. The droplet size and velocity distribution of biodiesels are compared to conventional fuels. For spray combustion investigations, a generic gas turbine-type combustor is developed to compare the spray flame established from PME, rapeseed methyl esters (RME), diesel, Jet-A1 and biodiesel blends. The spray droplet characteristics in the flame and the flow field in the combustor are investigated. Chemiluminescence imaging of OH* and CH* are applied to capture the global flame structure and heat release region. Flame spectroscopy and long bandpass filtered imaging at > 550 nm are performed to evaluate the tendency of soot formation. In general, biodiesels exhibit flame shapes and spray droplet characteristics that are comparable to conventional fuels. In spite of the higher fuel specific consumption, the emission of NOx is found to be lower for biodiesels compared to conventional fuels. The results show that biodiesels can potentially be used as alternative fuels for gas turbine operation.




Experimental Investigation of Physical Combustion Characteristics for Alternative Liquid Fuels


Book Description

The development of alternative liquid fuels has shifted from fuels such as ethanol and biodiesel, which are often created from food sources, to more advanced feedstocks, such as Algae, and synthetic fuels, such as Fischer-Tropsch diesel and other "renewable" fuels. This study was designed to characterize the physical combustion performance of ethanol, biodiesel, and an algae-derived "Hydrotreated Renewable Diesel." The physical properties of the fuels were characterized in order to describe the atomization behavior. In addition, Gas Chromatography/Mass Spectrometry provided insight into the chemical composition of each fuel. A swirl-stabilized research combustor was used to conduct experiments to simulate gas turbine combustion, and emissions and lean stability limits were measured. At cold-flow conditions, ensemble laser diffraction provided measurements of atomization characteristics, and high-speed cinematography provided additional insight. Most of the fuels had similar atomization characteristics, despite having a wide range of physical properties, which is attributed to the atomization strategy used in this work. However, biodiesel did exhibit larger droplets (5 microns larger on average), indicating that viscosity does have some effect on prompt atomization. Due to the nature of its production, the Hydrotreated Renewable Diesel performed similar to the conventional petroleum fuels, suggesting a high degree of interchangeability with conventional fuels. Ethanol, with the highest oxygen content, and the lowest heating value produced the lowest NOx emissions. Among the fuels examined, differences in emissions were attributed to differences in the evaporation and chemical behavior; with alternative fuels showing benefit over the conventional fuel.




Aviation Fuels


Book Description

Aviation Fuels provides up-to-date data on fuel effects on combustion performance and use of alternative fuels in aircraft. This book covers the latest advances on aviation fuel technologies, including alternative fuels, feedstocks and manufacturing processes, combustion performance, chemical modeling, fuel systems compatibility and the technical and environmental challenges for implementing the use of alternative fuels for aviation. Aviation fuel and combustion researchers, academics, and program managers for aviation technologies will value this comprehensive overview and summary on the present status of aviation fuels. - Presents an overview on all relevant fields of aviation fuels, including production, approval, fuel systems compatibility and combustion (including emissions) - Discusses the environmental impacts and carbon footprint of alternative fuels - Features a chapter on electric flight and hydrogen powered aircraft and how its implementation will impact the aviation industry