Gels and Other Soft Amorphous Solids


Book Description

Gels are ubiquitous both in materials science and biology. Interest in the behavior of this class of soft materials has increased significantly in the last decades as new experimental approaches have been developed to synthesize and characterize gels, and as theoretical and computational methods have advanced to model the structure and properties of these complex materials. For example, molecular simulation is now an essential tool to investigate gels and other types of soft matter where experimental measurements are not possible. The growth of this field to include applications in biology and medicine as also provided much impetus to gels research. The goal of this volume is to discuss recent progress in gel science. The chapters cover a wide variety of topics from polymer chemistry, physics, materials science and engineering, reflecting the interdisciplinary character of this field. A knowledge of the physical and chemical behavior of gels is essential for understanding, designing, and controlling material properties and performance. Gels can be synthesized with either flexible or stiff chains, linear or branched, and their length can also be tailored, etc. The network chains can be bonded to each other by chemical crosslinks or physical bonds involving van der Waals interactions, dipole-dipole interactions, hydrogen or ionic bonds, or pi-pi or pi-charge interactions. In addition to traditional polymer gels, this volume also focuses on low molecular mass organic gelators, relatively new, but rapidly growing, research direction in gel science. Special attention is devoted to the diverse applications of gels; using hydrogels for cleaning the painted surface of artwork (conservation of cultural heritage such as paintings and sculptures), developing advanced drug delivery systems, investigating the mechanism of setting of cement and hardening of concrete, etc.




Polymer Gels


Book Description

This volume contains a series of papers originally presented at the Symposium on Polymer Gels organized and sponsored by the Research Group on Polymer Gels,The Society of Polymer Science of Japan and co-sponsored by the Science and Technology Agency (ST A) and MIT!, Japan. The Symposium took place at Tsukuba Science City on 18th and 19th September, 1989. Recognized experts in their fields were invited to speak and there was a strong attendance from government, academic and industrial research centers. The purpose of the Symposium was to review the state of the art and to present and discuss recent progress in the understanding of the behavioral properties of polymer gels and their application to biomedical, environmental and robotic fields. Most of the papers and related discussions concentrated on the swelling behavior of hydrogels and chemomechanical systems, both artificial and naturally occurring, in which external stimuli of a physical or chemical nature control energy transformation or signal transduction. The recent great interest in chemomechanical systems based on polymer gels has stimulated considerable effort towards the development of new sensors and actuators, controllable membrane separation processes, and delivery systems in which the functions of sensing, processing and actuation are all built into the polymeric network device. Artificial chemomechanical systems, through the use of environmentally sensitive polymer gels, are emerging as interesting materials for mimicking basic processes previously only confined to the biological world, and commercially viable applications are also foreseen in the not-too-distant future.




Fluids, Colloids and Soft Materials


Book Description

This book presents a compilation of self-contained chapters covering a wide range of topics within the broad field of soft condensed matter. Each chapter starts with basic definitions to bring the reader up-to-date on the topic at hand, describing how to use fluid flows to generate soft materials of high value either for applications or for basic research. Coverage includes topics related to colloidal suspensions and soft materials and how they differ in behavior, along with a roadmap for researchers on how to use soft materials to study relevant physics questions related to geometrical frustration.




Molecular Gels


Book Description

"Molecular Gels: Materials with Self-Assembled Fibrillar Networks" is a comprehensive treatise on gelators, especially low molecular-mass gelators and the properties of their gels. The structures and modes of formation of the self-assembled fibrillar networks (SAFINs) that immobilize the liquid components of the gels are discussed experimentally and theoretically. The spectroscopic, rheological, and structural features of the different classes of low molecular-mass gelators are also presented. Many examples of the application of the principal analytical techniques for investigation of molecular gels (including SANS, SAXS, WAXS, UV-vis absorption, fluorescence and CD spectroscopies, scanning electron, transmission electron and optical microscopies, and molecular modeling) are presented didactically and in-depth, as are several of the theories of the stages of aggregation of individual low molecular-mass gelator molecules leading to SAFINs. Several actual and potential applications of molecular gels in disparate fields (from silicate replication of nanostructures to art conservation) are described. Special emphasis is placed on perspectives for future developments. This book is an invaluable resource for researchers and practitioners either already researching self-assembly and soft matter or new to the area. Those who will find the book useful include chemists, engineers, spectroscopists, physicists, biologists, theoreticians, and materials scientists.




Physical Gels from Biological and Synthetic Polymers


Book Description

Presenting a unique perspective on state-of-the-art physical gels, this interdisciplinary guide provides a complete, critical analysis of the field and highlights recent developments. It shows the interconnections between the key aspects of gels, from molecules and structure through to rheological and functional properties, with each chapter focusing on a different class of gel. There is also a final chapter covering innovative systems and applications, providing the information needed to understand current and future practical applications of gels in the pharmaceutical, agricultural, cosmetic, chemical and food industries. Many research teams are involved in the field of gels, including theoreticians, experimentalists and chemical engineers, but this interdisciplinary book collates and rationalises the many different points of view to provide a clear understanding of these complex systems for researchers and graduate students.




Polymeric Gels


Book Description

Polymeric Gels: Characterization, Properties and Biomedical Applications covers the fundamentals and applications of polymeric gels. Particular emphasis is given to their synthesis, properties and characteristics, with topics such as natural, synthetic, and smart polymeric gels, medical applications, and advancements in conductive and magnetic gels presented. The book covers the basics and applications of hydrogels, providing readers with a comprehensive guide on the types of polymeric gels used in the field of biomedical engineering. - Provides guidance for decisions on the suitability and appropriateness of a synthetic route and characterization technique for particular polymeric networks - Analyzes and compares experimental data - Presents in-depth information on the physical properties of polymeric gels using mathematical models - Uses an interdisciplinary approach to discuss potential new applications for both established polymeric gels and recent advances




Theory and Applications of Colloidal Suspension Rheology


Book Description

Essential text on the practical application and theory of colloidal suspension rheology, written by an international coalition of experts.




Injectable Hydrogels for 3D Bioprinting


Book Description

Hydrogels represent one of the cornerstones in tissue engineering and regenerative medicine, due to their biocompatibility and physiologically relevant properties. These inherent characteristics mean that they can be widely exploited as bioinks in 3D bioprinting for tissue engineering applications as well as injectable gels for cell therapy and drug delivery purposes. The research in these fields is booming and this book provides the reader with a terrific introduction to the burgeoning field of injectable hydrogel design, bioprinting and tissue engineering. Edited by three leaders in the field, users of this book will learn about different classes of hydrogels, properties and synthesis strategies to produce bioinks. A section devoted to the key processing and design challenges at the hydrogel/3D bioprinting/tissue interface is also covered. The final section of the book closes with pertinent clinical applications. Tightly edited, the reader will find this book to be a coherent resource to learn from. It will appeal to those working across biomaterials science, chemical and biomedical engineering, tissue engineering and regenerative medicine.




Introduction to Sol-Gel Processing


Book Description

This book presents a broad, general introduction to the processing of Sol-Gel technologies. This updated volume serves as a general handbook for researchers and students entering the field. This new edition provides updates in fields that have undergone rapid developments, such as Ceramics, Catalysis, Chromatropgraphy, biomaterials, glass science, and optics. It provides a simple, compact resource that can also be used in graduate-level materials science courses.




Biopolymer-Based Formulations


Book Description

Biopolymer-Based Formulations: Biomedical and Food Applications presents the latest advances in the synthesis and characterization of advanced biopolymeric formulations and their state-of-the-art applications across biomedicine and food science. Sections cover the fundamentals, applications, future trends, environmental, ethical and medical considerations, and biopolymeric architectures that are organized in nano, micro and macro scales. The final section of the book focuses on novel applications and recent developments. This book is an essential resource for researchers, scientists and advanced students in biopolymer science, polymer science, polymer chemistry, polymer composites, plastics engineering, biomaterials, materials science, biomedical engineering, and more. It will also be of interest to R&D professionals, scientists and engineers across the plastics, food, biomedical and pharmaceutical industries. - Provides in-depth coverage of methods for the characterization of the physical properties of biopolymeric architectures - Supports a range of novel applications, including scaffolds, implant coatings, drug delivery, and nutraceutical encapsulation systems - Includes the use of experimental data and mathematical modeling, thus enabling the reader to analyze and compare the properties of different polymeric gels