General Mathematics


Book Description

General Mathematics: Revision and Practice is a comprehensive resource for self-study or teacher-led courses to take GCSE and Standard Grade candidates right up to A* Grade, or Scottish Credit level. This edition now includes a new chapter on investigations, practical problems and puzzles, to give the student problem-solving skills and practice ready for coursework. Key Points: · A complete course in one volume · Ease of accessibility to different maths topics · Graded questions, revision exercises and past examination questions · Ample quantity of material providing wide choice · Mathematics drawn out from a wide range of realistic everyday situations · Numerical answers provided at the back




Elements of Advanced Mathematics, Third Edition


Book Description

For many years, this classroom-tested, best-selling text has guided mathematics students to more advanced studies in topology, abstract algebra, and real analysis. Elements of Advanced Mathematics, Third Edition retains the content and character of previous editions while making the material more up-to-date and significant. This third edition adds four new chapters on point-set topology, theoretical computer science, the P/NP problem, and zero-knowledge proofs and RSA encryption. The topology chapter builds on the existing real analysis material. The computer science chapters connect basic set theory and logic with current hot topics in the technology sector. Presenting ideas at the cutting edge of modern cryptography and security analysis, the cryptography chapter shows students how mathematics is used in the real world and gives them the impetus for further exploration. This edition also includes more exercises sets in each chapter, expanded treatment of proofs, and new proof techniques. Continuing to bridge computationally oriented mathematics with more theoretically based mathematics, this text provides a path for students to understand the rigor, axiomatics, set theory, and proofs of mathematics. It gives them the background, tools, and skills needed in more advanced courses.




Mathematics Form and Function


Book Description

This book records my efforts over the past four years to capture in words a description of the form and function of Mathematics, as a background for the Philosophy of Mathematics. My efforts have been encouraged by lec tures that I have given at Heidelberg under the auspices of the Alexander von Humboldt Stiftung, at the University of Chicago, and at the University of Minnesota, the latter under the auspices of the Institute for Mathematics and Its Applications. Jean Benabou has carefully read the entire manuscript and has offered incisive comments. George Glauberman, Car los Kenig, Christopher Mulvey, R. Narasimhan, and Dieter Puppe have provided similar comments on chosen chapters. Fred Linton has pointed out places requiring a more exact choice of wording. Many conversations with George Mackey have given me important insights on the nature of Mathematics. I have had similar help from Alfred Aeppli, John Gray, Jay Goldman, Peter Johnstone, Bill Lawvere, and Roger Lyndon. Over the years, I have profited from discussions of general issues with my colleagues Felix Browder and Melvin Rothenberg. Ideas from Tammo Tom Dieck, Albrecht Dold, Richard Lashof, and Ib Madsen have assisted in my study of geometry. Jerry Bona and B.L. Foster have helped with my examina tion of mechanics. My observations about logic have been subject to con structive scrutiny by Gert Miiller, Marian Boykan Pour-El, Ted Slaman, R. Voreadou, Volker Weispfennig, and Hugh Woodin.




Mathematics for the General Reader


Book Description

"A first-class mathematician's lucid, unhurried account of the science of numbers from arithmetic through the calculus." — James R. Newman, The World of Mathematics. This highly accessible introduction to mathematics is geared toward readers seeking a firm grasp of the essentials of mathematical theory and practice. The treatment also offers a concise outline of mathematical history and a clearer notion of why mathematicians do what they do. Author E. C. Titchmarsh, who served for many years as Savilian Professor of Geometry at Oxford University, begins with counting and the fundamentals of arithmetic. He guides readers through the complexities of algebra, fractions, geometry, irrational numbers, logarithms, infinite series, complex numbers, quadratic equations, trigonometry, functions, and integral and differential calculus. Titchmarsh's graceful, fluid style helps make complicated topics easier to grasp, and his inclusion of numerous examples will prove especially helpful to readers with little or no background in mathematics.




New General Mathematics


Book Description




New General Mathematics for Uganda Students'


Book Description

A new course developed by highly experienced Mathematics educators and textbook writers to cover the MoES Secondary Mathematics syllabus and to prepare students for UCE O-level Matematics examinations. The course consists of four Students' Books, each with an accompanying Teacher's Guide.




Excel Preliminary General Mathematics


Book Description

A comprehensive study guide covering the complete Preliminary mathematics course. Special features include a thorough and complete summary of each topic. Outcomes provided at the beginning of each chapter and important definitions and formulae. Complete and correct solutions provided for all questions. Suitable for 2001 HSC.




General Relativity for Mathematicians


Book Description

This is a book about physics, written for mathematicians. The readers we have in mind can be roughly described as those who: I. are mathematics graduate students with some knowledge of global differential geometry 2. have had the equivalent of freshman physics, and find popular accounts of astrophysics and cosmology interesting 3. appreciate mathematical elarity, but are willing to accept physical motiva tions for the mathematics in place of mathematical ones 4. are willing to spend time and effort mastering certain technical details, such as those in Section 1. 1. Each book disappoints so me readers. This one will disappoint: 1. physicists who want to use this book as a first course on differential geometry 2. mathematicians who think Lorentzian manifolds are wholly similar to Riemannian ones, or that, given a sufficiently good mathematical back ground, the essentials of a subject !ike cosmology can be learned without so me hard work on boring detaiis 3. those who believe vague philosophical arguments have more than historical and heuristic significance, that general relativity should somehow be "proved," or that axiomatization of this subject is useful 4. those who want an encyclopedic treatment (the books by Hawking-Ellis [1], Penrose [1], Weinberg [1], and Misner-Thorne-Wheeler [I] go further into the subject than we do; see also the survey article, Sachs-Wu [1]). 5. mathematicians who want to learn quantum physics or unified fieId theory (unfortunateIy, quantum physics texts all seem either to be for physicists, or merely concerned with formaI mathematics).




General Systems Theory: Mathematical Foundations


Book Description

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression.- Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering




New General Mathematics for Junior Secondary Schools


Book Description

This well-established series, the most popular in Nigeria, has been fully revised to reflect recent developments in mathematics education at junior secondary level and the views of the many users of the books. It has expecially been revised to fully cover the requirements of the new NERDC Universal Basic Education Curriculum.