Generalized Topological Spaces via Neutrosophic Sets


Book Description

In this disquisition we have scrutinize about the traits of generalized topological spaces using neutrosophic sets. Depending on the nature of neutrosophic sets over the generalized topological spaces, some of the features has been contemplated.




Neutrosophic Sets and Systems, vol. 51/2022


Book Description

“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic).




Neutrosophic Topological Spaces


Book Description

In this paper, the concept of neutrosophic topological spaces is introduced. We define and study the properties of neutrosophic open sets, closed sets, interior and closure. The set of all generalize neutrosophic pre-closed sets GNPC and the set of all neutrosophic open sets in a neutrosophic topological space can be considered as examples of generalized neutrosophic topological spaces.




Neutrosophic Sets and Systems, Vol. 35, 2020


Book Description

“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles in this issue: Neutrosophic Soft Fixed Points, Selection of Alternative under the Framework of Single-Valued Neutrosophic Sets, Application of Single Valued Trapezoidal Neutrosophic Numbers in Transportation Problem.




Neutrosophic Sets and Systems, vol. 50/2022


Book Description

“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic).




Neutrosophic Sets and Systems, Vol. V


Book Description

This book is a collection of nine papers, contributed by different authors and co-authors (listed in the order of the papers): A. A. Salama, O. M. Khaled, K. M. Mahfouz, M. Ali, F. Smarandache, M. Shabir, L. Vladareanu, S. Broumi, K. Mondal, S. Pramanik, I. Arockiarani, I. R. Sumathi, M. Eisa and I. Deli. In first paper, the authors studied Neutrosophic Correlation and Simple Linear Regression. The Generalization of Neutrosophic Rings and Neutrosophic Fields is proposed in the second paper. Cosine Similarity Measure of Interval Valued Neutrosophic Sets is studied in third paper. In fourth paper A Study on Problems of Hijras in West Bengal Based on Neutrosophic Cognitive Maps is introduced. Similarly in fifth paper Neutrosophic Crisp Set Theory is discussed. In paper six Interval Valued Fuzzy Neutrosophic Soft Structure Spaces are presented by the authors. Soft Neutrosophic Bi-LA-Semigroup and Soft Neutrosophic N-LA-Semigroup is given in seventh paper. Introduction to Image Processing via Neutrosophic Technique is given in paper eight. In the last paper, Neutrosophic Soft Multi-Set Theory and Its Decision Making is presented by the authors.




Neutrosophic Sets and Systems, vol. 19/2018


Book Description

“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.




Optimization Theory Based on Neutrosophic and Plithogenic Sets


Book Description

Optimization Theory Based on Neutrosophic and Plithogenic Sets presents the state-of-the-art research on neutrosophic and plithogenic theories and their applications in various optimization fields. Its table of contents covers new concepts, methods, algorithms, modelling, and applications of green supply chain, inventory control problems, assignment problems, transportation problem, nonlinear problems and new information related to optimization for the topic from the theoretical and applied viewpoints in neutrosophic sets and logic. - All essential topics about neutrosophic optimization and Plithogenic sets make this volume the only single source of comprehensive information - New and innovative theories help researchers solve problems under diverse optimization environments - Varied applications address practitioner fields such as computational intelligence, image processing, medical diagnosis, fault diagnosis, and optimization design




Neutrosophic Sets and Systems, vol. 5/2014


Book Description

“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.




Neutrosophic Sets and Systems, Vol. VI


Book Description

This volume is a collection of ten papers and a review of a book, written by different authors and co-authors (listed in the order of the papers): F. Yuhua, P. K. Maji, A. A. Salama, H. Elghawalby, A. Mukherjee, M. Datta, F. Smarandache,K. Mondal, S. Pramanik, M. Ali, L. Vladareanu, M. Shabir, S. Broumi, S. Ye, J. Ye, S. Sarkar, D. Gifu and M. Teodorescu. In first paper, the author proposed Pauli Exclusion Principle and the Law of Included Multiple-Middle. Weighted Neutrosophic Soft Sets are proposed in the second paper. Neutrosophic Crisp Sets and Neutrosophic Crisp Relations are studied in third paper. In fourth paper, Interval Valued Neutrosophic Soft Topological Spaces are introduced. Similarly in fifth paper, Multi-criteria Group Decision Making Approach for Teacher Recruitment in Higher Education Under Simplified Neutrosophic Environment is discussed. In paper six, Generalization of Soft Neutrosophic Rings and Soft Neutrosophic Fields are presented by the authors. Neutrosophic Refined Similarity Measure Based on Cosine Function is given in seventh paper. Paper eight is about to study Similarity Measure between Single Valued Neutrosophic Multisets and Its Application in Medial Diagnosis. In the next paper Several Similarity Measures of Interval Valued Neutrosophic Soft Sets and Their Application in Pattern Recognition Problems are discussed. The authors introduced Soft Neutrosophic Groupoids and Their Generalization in the tenth paper. At the end a book review, Neutosophic routes in multiverse of communication is presented by the authors.