The Algorithmic Beauty of Sea Shells


Book Description

The fascinating patterns on the shells of tropical sea snails are not only compellingly beautiful but also tell a tale of biological development. The decorative patterns are records of their own genesis, which follows laws such as those of dune formation or the spread of a flu epidemic. Hans Meinhardt has analyzed the dynamical processes that form these patterns and has retraced them in computer simulations. His book is exciting not only for the astonishing scientific knowledge it reveals but also for its fascinating pictures. An accompanying CD-ROM with the corresponding algorithms allows the reader to simulate the natural pattern formation and growth processes.




Motoneuron Dendrite Morphogenesis in Caenorhabditis Elegans


Book Description

Nervous system function, from sensory perception to motor control and cognition, requires the correct wiring of neural circuits during development. The establishment of these circuits consists of the growth and guidance of signal-sending axons and signal-receiving dendrites to their correct targets. Despite being exposed to the same molecular environment, a neuron's axon and dendrites have different morphologies and targets. Using the C. elegans DA9 motoneuron we explore mechanisms of dendrite growth and how a dendrite-specific response is achieved to a cue regulating axons and dendrites. We found that DA9 dendrite development is spatially and temporally distinct from the axon. While the axon grows embryonically, the dendrite develops postembryonically. Characterizing DA9 dendrite growth in larvae, adults and body size mutants suggests that it is not driven by size, but rather by a local cue. A candidate approach to identify this cue taught us that the guidance cue UNC-6/Netrin is required for both axon and dendrite development in DA9. The UNC-6 repulsive receptor UNC-5 repels the axon from the ventral nerve cord, while the attractive receptor UNC-40 is dendritically enriched and promotes antero-posterior dendrite growth. While ventrally secreted UNC-6 instructs axon guidance, dorsal or even membrane-tethered UNC-6 can support dendrite development. Surprisingly, the kinase PAR-4/LKB1 is selectively required for UNC-40 signaling in dendrite outgrowth. Finally, we found that the C-terminal motor kinesin KLP-16 also promotes DA9 dendrite growth and that its enrichment at the DA9 dendrite distal tip may be partially regulated by PAR-4/LKB1. These data suggest that axon and dendrite of one neuron interpret common environmental cues with different receptors and downstream signaling pathways.




The Embryonic Development of Drosophila melanogaster


Book Description

" . . . but our knowledge is so weak that no philosoph er will ever be able to completely explore the nature of even a fly . . . " * Thornas Aquinas "In Syrnbolurn Apostolorum" 079 RSV p/96 This is a monograph on embryogenesis of the fruit fly Drosophi la melanogaster conceived as a reference book on morphology of embryonie development. A monograph of this extent and con tent is not yet available in the literature of Drosophila embryolo gy, and we believe that there is areal need for it. Thanks to the progress achieved during the last ten years in the fields of devel opmental and molecular genetics, work on Drosophila develop ment has considerably expanded creating an even greater need for the information that we present here. Our own interest for wildtype embryonie development arose several years ago, when we began to study the development of mutants. While those studies were going on we repeatedly had occasion to state in sufficiencies in the existing literature about the embryology of the wildtype, so that we undertook investigating many of these problems by ourselves. Convinced that several of our colleagues will have encountered similar difficulties we decided to publish the present monograph. Although not expressely recorded, Thomas Aquinas probably referred to the domestic fly and not to the fruit fly. Irrespective of which fly he meant, however, we know that Thomas was right in any case.







Branching Morphogenesis


Book Description

Branching morphogenesis, the creation of branched structures in the body, is a key feature of animal and plant development. This book brings together, for the first time, expert researchers working on a variety of branching systems to present a state-of-the-art view of the mechanisms that control branching morphogenesis. Systems considered range from single cells, to blood vessel and drainage duct systems to entire body plans, and approaches range from observation through experiment to detailed biophysical modelling. The result is an integrated overview of branching.




Microinjection


Book Description

As the number of sequenced genomes continues to increase, understanding the functions of newly discovered molecules will require greater efficiency and further study within the context of live cells. In Microinjection: Methods and Applications, expert researchers contribute methods utilizing microinjection techniques ranging from expression of RNA to the integration of DNA into the genome with the ultimate goal of learning about gene expression, signal transduction, and protein function within these living cells. This versatile volume updates established techniques such as cRNA expression in Xenopus oocytes, and examines new, cutting-edge technologies, including antisense morpholino oligonucleotides, RNAi for knockdown experiments, and the use of integrase to produce transgenic animals, all through microinjection techniques that can be easily adopted by any lab. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include brief introductions to the topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and Notes sections, highlighting tips on troubleshooting and avoiding known pitfalls. Comprehensive and easily accessible, Microinjection: Methods and Applications is an ideal source for new ideas and techniques certain to aid in the advance of biological research.




E. coli in Motion


Book Description

Escherichia coli, commonly referred to as E. coli, has been the organism of choice for molecular genetics for decades. Its machinery and mobile behavior is one of the most fascinating topics for cell scientists. Scientists and engineers, not trained in microbiology, and who would like to learn more about living machines, can see it as a unique example. This cross-disciplinary monograph covers more than thirty years of research and is accessible to graduate students and scientists alike.




Extracellular and Intracellular Signaling


Book Description

Intracellular cell signaling is a well understood process. However, extracellular signals such as hormones, adipokines, cytokines and neurotransmitters are just as important but have been largely ignored in other works. Aimed at medical professionals and pharmaceutical specialists, this book integrates extracellular and intracellular signalling processes and offers a fresh perspective on new drug targets.




The Development of Drosophila Melanogaster


Book Description

The fruit fly Drosophila melanogaster offers the most powerful means of studying embryonic development in eukaryotes. New information from many different organ systems has accumulated rapidly in the past decade. This monograph, written by the most distinguished workers in the field, is the most authoritative and comprehensive synthesis of Drosophila developmental biology available and emphasizes the insights gained by molecular and genetic analysis. In two volumes, it is a lavishly illustrated, elegantly designed reference work illustrating principles of genetic regulation of embryogenesis that may apply to other eukaryotes.




Microtubule Dynamics


Book Description

Microtubules are at the heart of cellular self-organization, and their dynamic nature allows them to explore the intracellular space and mediate the transport of cargoes from the nucleus to the outer edges of the cell and back. In Microtubule Dynamics: Methods and Protocols, experts in the field provide an up-to-date collection of methods and approaches that are used to investigate microtubule dynamics in vitro and in cells. Beginning with the question of how to analyze microtubule dynamics, the volume continues with detailed descriptions of how to isolate tubulin from different sources and with different posttranslational modifications, methods used to study microtubule dynamics and microtubule interactions in vitro, techniques to investigate the ultrastructure of microtubules and associated proteins, assays to study microtubule nucleation, turnover, and force production in cells, as well as approaches to isolate novel microtubule-associated proteins and their interacting proteins. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Definitive and practical, Microtubule Dynamics: Methods and Protocols provides the key protocols needed by novices and experts on how to perform a broad range of well-established and newly-emerging techniques in this vital field.