Genome Plasticity and Infectious Diseases


Book Description

Comprehensive examination of the current understanding of pathogen adaptation and microevolution. • Introduces the rapidly evolving field of genome plasticity, presents the latest research findings, and explores the relevance of these findings to infection and infection control. • Compiles and analyzes current investigations on the genome fluidity of pathogenic microbes. • Explores bacteria, viruses, fungi, and parasites from the aspect of host genome plasticity and its impact on infection.







Genome Plasticity in Health and Disease


Book Description

Genome Plasticity in Health and Disease provides a fully up-to-date overview on genome plasticity and its role in human physiology and disease. Following an introduction to the field, a diverse range of chapters cover genomic and epigenomic analysis and the use of model organisms and genomic databases in studies. Specific molecular and biochemical mechanisms of genome plasticity are examined, including somatic variants, De Novo variants, founder variations, isolated populations dynamics, copy-number variations, mobile elements, DNA methylation, histone modifications, transcription factors, non-coding RNAs, telomere dynamics and RNA editing. Later chapters explore disease relevance for cancer, as well as cardiovascular, neuropsychiatric, inflammatory, and endocrine disease, and associated pathways for drug discovery. - Examines the role of genome plasticity across a range of disease types, from cardiovascular disease, to cancer and neuropsychiatric disorders - Adopts an interdisciplinary approach, with expert contributions across the spectrum of basic science and disease relevance to drug discovery




Genetics and Evolution of Infectious Diseases


Book Description

Genetics and Evolution of Infectious Diseases, Third Edition discusses the evolving field of infectious diseases and their continued impact on the health of populations, especially in resource-limited areas of the world where they must confront the dual burden of death and disability due to infectious and chronic illnesses. Although substantial gains have been made in public health interventions for the treatment, prevention, and control of infectious diseases, in recent decades the world has witnessed the emergence of the human immunodeficiency virus (HIV) and the COVID-19 pandemic, increasing antimicrobial resistance, and the emergence of many new bacterial, fungal, parasitic, and viral pathogens. Fully updated and revised, this new edition presents the consequences of such diseases, the evolution of infectious diseases, the genetics of host-pathogen relationship, and the control and prevention strategies that are, or can be, developed. This book offers valuable information to biomedical researchers, clinicians, public health practitioners, decisions-makers, and students and postgraduates studying infectious diseases, microbiology, medicine, and public health that is relevant to the control and prevention of neglected and emerging worldwide diseases. - Takes an integrated approach to infectious diseases - Provides the latest developments in the field of infectious diseases - Focuses on the contribution of evolutionary and genomic studies for the study and control of transmissible diseases - Includes updated and revised contributions from leading authorities, along with six new chapters




Genomics of Plant-Associated Fungi: Monocot Pathogens


Book Description

This book describes how genomics has revolutionized our understanding of agriculturally important plant-associated fungi. It illustrates some fundamental discoveries about these eukaryotic microbes with regard to the overall structure of their genomes, their lifestyles and the molecular mechanisms that form the basis of their interactions with plants. Genomics has provided new insights into fungal lifestyles and led to practical advances in plant breeding and crop protection, such as predictions about the spread and evolution of new pathogens. This volume focuses on fungi that are important cereal and other monocot plant pathogens and includes: Pyrenophora tritici-repentis, Cochliobolus sp., Colletotrichum sp., Fusarium graminearum, Mycosphaerella graminicola and Mycosphaerella fijiensis, Magnaporthe oryzae, Blumeria graminis and Puccinia graminis.




The New Science of Metagenomics


Book Description

Although we can't usually see them, microbes are essential for every part of human life-indeed all life on Earth. The emerging field of metagenomics offers a new way of exploring the microbial world that will transform modern microbiology and lead to practical applications in medicine, agriculture, alternative energy, environmental remediation, and many others areas. Metagenomics allows researchers to look at the genomes of all of the microbes in an environment at once, providing a "meta" view of the whole microbial community and the complex interactions within it. It's a quantum leap beyond traditional research techniques that rely on studying-one at a time-the few microbes that can be grown in the laboratory. At the request of the National Science Foundation, five Institutes of the National Institutes of Health, and the Department of Energy, the National Research Council organized a committee to address the current state of metagenomics and identify obstacles current researchers are facing in order to determine how to best support the field and encourage its success. The New Science of Metagenomics recommends the establishment of a "Global Metagenomics Initiative" comprising a small number of large-scale metagenomics projects as well as many medium- and small-scale projects to advance the technology and develop the standard practices needed to advance the field. The report also addresses database needs, methodological challenges, and the importance of interdisciplinary collaboration in supporting this new field.




The Logic of Chance


Book Description

The Logic of Chance offers a reappraisal and a new synthesis of theories, concepts, and hypotheses on the key aspects of the evolution of life on earth in light of comparative genomics and systems biology. The author presents many specific examples from systems and comparative genomic analysis to begin to build a new, much more detailed, complex, and realistic picture of evolution. The book examines a broad range of topics in evolutionary biology including the inadequacy of natural selection and adaptation as the only or even the main mode of evolution; the key role of horizontal gene transfer in evolution and the consequent overhaul of the Tree of Life concept; the central, underappreciated evolutionary importance of viruses; the origin of eukaryotes as a result of endosymbiosis; the concomitant origin of cells and viruses on the primordial earth; universal dependences between genomic and molecular-phenomic variables; and the evolving landscape of constraints that shape the evolution of genomes and molecular phenomes. "Koonin's account of viral and pre-eukaryotic evolution is undoubtedly up-to-date. His "mega views" of evolution (given what was said above) and his cosmological musings, on the other hand, are interesting reading." Summing Up: Recommended Reprinted with permission from CHOICE, copyright by the American Library Association.




Genomics, Proteomics, and Clinical Bacteriology


Book Description

Gazing into crystal balls is beyond the expertise of most scientists. Yet, as we look further into the 21st century, one does not have to be Nostradamus to predict that the current genomics and proteomics "revolution" will have an immense impact on medical bacteriology. This impact is already being re- ized in many academic departments, and although encroachment on routine diagnostic bacteriology, particularly in the hospital setting, is likely to occur at a slower pace, it remains nonetheless inevitable. Therefore, it is important that no one working in bacteriology should find themselves distanced from these fundamental developments. The involvement of all clinical bacteriologists is essential if the significant achievements of genome sequencing and analysis are to be turned into tangible advances, with resulting benefits for patient care and m- agement. It is our hope that Genomics, Proteomics, and Clinical Bacteriology: Methods and Reviews will play a part in bringing such a development to fruition. The advances in genomics and proteomics have already given us frequent opportunities to reassess our knowledge and understanding of established b- terial adversaries, and have provided us with the means to identify new foes. The new knowledge gained is enabling us to reconsider, for example, our c- cepts of bacterial pathogenicity, phylogeny and novel targets for antibacterial chemotherapy. These topics, and others, are considered in Genomics, Proteomics, and Clinical Bacteriology: Methods and Reviews.




Bacterial Population Genetics in Infectious Disease


Book Description

This book is a unique synthesis of the major concepts and methods in bacterial population genetics in infectious disease, a field that is now about 35 yrs old. Emphasis is given to explaining population-level processes that shape genetic variation in bacterial populations and statistical methods of analysis of bacterial genetic data. A "how to" of bacterial population genetics, which covers an extremely large range of organisms Expanding area of science due to high-throughput genome sequencing of bacterial pathogens Covers both fundamental approaches to analyzing bacterial population structures with conceptual background in bacterial population biology Detailed treatment of statistical methods




Evolving Human Nutrition


Book Description

Exploration of changing human nutrition from evolutionary and social perspectives and its influence on health and disease, past and present.