Geometrical and Instrumental Optics


Book Description

Geometrical and Instrumental Optics




Principles of Electron Optics


Book Description

The three volumes in the PRINCIPLES OF ELECTRON OPTICS Series constitute the first comprehensive treatment of electron optics in over forty years. While Volumes 1 and 2 are devoted to geometrical optics, Volume 3 is concerned with wave optics and effects due to wave length. Subjects covered include:Derivation of the laws of electron propagation from SchrUdinger's equationImage formation and the notion of resolutionThe interaction between specimens and electronsImage processingElectron holography and interferenceCoherence, brightness, and the spectral functionTogether, these works comprise a unique and informative treatment of the subject. Volume 3, like its predecessors, will provide readers with both a textbook and an invaluable reference source.







Field Guide to Geometrical Optics


Book Description

This Field Guide derives from the treatment of geometrical optics that has evolved from both the undergraduate and graduate programs at the Optical Sciences Center at the University of Arizona. The development is both rigorous and complete, and it features a consistent notation and sign convention. This volume covers Gaussian imagery, paraxial optics, first-order optical system design, system examples, illumination, chromatic effects, and an introduction to aberrations. The appendices provide supplemental material on radiometry and photometry, the human eye, and several other topics.




Modern Ophthalmic Optics


Book Description

This book is a comprehensive account of the most recent developments in modern ophthalmic optics. It makes use of the powerful matrix formalism to describe curvature and power, providing a unified view of the optical and geometrical properties of lenses. This unified approach is applicable to the design and properties of not only spectacle lenses, but also contact and intraocular lenses (IOL). The newest developments in lens design, manufacturing and testing are discussed, with an emphasis on the description of free-form technology, which has surpassed traditional manufacturing methods and allows digital lenses to be specifically designed with the unique requirements of the user. Other important topics which are covered include modern lens materials, up-to-date lens measuring techniques, contact and intraocular lenses, progressive power lenses, low vision aids, ocular protection and coatings. Providing a broad overview of recent developments in the field, it is ideal for researchers, manufacturers and practitioners involved in ophthalmic optics.




Concise Optics


Book Description

This introductory text is a reader friendly treatment of geometrical and physical optics emphasizing problems and solved examples with detailed analysis and helpful commentary. The authors are seasoned educators with decades of experience teaching optics. Their approach is to gradually present mathematics explaining the physical concepts. It covers ray tracing to the wave nature of light, and introduces Maxwell’s equations in an organic fashion. The text then moves on to explains how to analyze simple optical systems such as spectacles for improving vision, microscopes, and telescopes, while also being exposed to contemporary research topics. Ajawad I. Haija is a professor of physics at Indiana University of Pennsylvania. M. Z. Numan is professor and chair of the department of physics at Indiana University of Pennsylvania. W. Larry Freeman is Emeritus Professor of Physics at Indiana University of Pennsylvania.




The Eye and Visual Optical Instruments


Book Description

Comprehensive textbook on the design and visual ergonomics of optical instruments.




Adaptive Optics for Biological Imaging


Book Description

Adaptive Optics for Biological Imaging brings together groundbreaking research on the use of adaptive optics for biological imaging. The book builds on prior work in astronomy and vision science. Featuring contributions by leaders in this emerging field, it takes an interdisciplinary approach that makes the subject accessible to nonspecialists who want to use adaptive optics techniques in their own work in biology and bioengineering. Organized into three parts, the book covers principles, methods, and applications of adaptive optics for biological imaging, providing the reader with the following benefits: Gives a general overview of applied optics, including definitions and vocabulary, to lay a foundation for clearer communication across disciplines Explains what kinds of optical aberrations arise in imaging through various biological tissues, and what technology can be used to correct for these aberrations Explores research done with a variety of biological samples and imaging instruments, including wide-field, confocal, and two-photon microscopes Discusses both indirect wavefront sensing, which uses an iterative approach, and direct wavefront sensing, which uses a parallel approach Since the sample is an integral part of the optical system in biological imaging, the field will benefit from participation by biologists and biomedical researchers with expertise in applied optics. This book helps lower the barriers to entry for these researchers. It also guides readers in selecting the approach that works best for their own applications.




From Sight to Light


Book Description

From its inception in Greek antiquity, the science of optics was aimed primarily at explaining sight and accounting for why things look as they do. By the end of the seventeenth century, however, the analytic focus of optics had shifted to light: its fundamental properties and such physical behaviors as reflection, refraction, and diffraction. This dramatic shift—which A. Mark Smith characterizes as the “Keplerian turn”—lies at the heart of this fascinating and pioneering study. Breaking from previous scholarship that sees Johannes Kepler as the culmination of a long-evolving optical tradition that traced back to Greek antiquity via the Muslim Middle Ages, Smith presents Kepler instead as marking a rupture with this tradition, arguing that his theory of retinal imaging, which was published in 1604, was instrumental in prompting the turn from sight to light. Kepler’s new theory of sight, Smith reveals, thus takes on true historical significance: by treating the eye as a mere light-focusing device rather than an image-producing instrument—as traditionally understood—Kepler’s account of retinal imaging helped spur the shift in analytic focus that eventually led to modern optics. A sweeping survey, From Sight to Light is poised to become the standard reference for historians of optics as well as those interested more broadly in the history of science, the history of art, and cultural and intellectual history.




Modern Optical Engineering


Book Description

A revised version of a text which was first published in 1966. The book is designed as a general reference book for engineers and assumes a broad knowledge of current optical systems and their design. Additional topics include fibre optics, thin films and CAD systems.