Geometric Methods for Quantum Field Theory


Book Description

Both mathematics and mathematical physics have many active areas of research where the interplay between geometry and quantum field theory has proved extremely fruitful. Duality, gauge field theory, geometric quantization, SeibergOCoWitten theory, spectral properties and families of Dirac operators, and the geometry of loop groups offer some striking recent examples of modern topics which stand on the borderline between geometry and analysis on the one hand and quantum field theory on the other, where the physicist''s and the mathematician''s perspective complement each other, leading to new mathematical and physical concepts and results. This volume introduces the reader to some basic mathematical and physical tools and methods required to follow the recent developments in some active areas of mathematical physics, including duality, gauge field theory, geometric quantization, Seiberg-Witten theory, spectral properties and families of Dirac operators, and the geometry of loop groups. It comprises seven self-contained lectures, which should progressively give the reader a precise idea of some of the techniques used in these areas, as well as a few short communications presented by young participants at the school. Contents: Lectures: Introduction to Differentiable Manifolds and Symplectic Geometry (T Wurzbacher); Spectral Properties of the Dirac Operator and Geometrical Structures (O Hijazi); Quantum Theory of Fermion Systems: Topics Between Physics and Mathematics (E Langmann); Heat Equation and Spectral Geometry. Introduction for Beginners (K Wojciechowski); Renormalized Traces as a Geometric Tool (S Paycha); Concepts in Gauge Theory Leading to Electric-Magnetic Duality (T S Tsun); An Introduction to Seiberg-Witten Theory (H Ocampo); Short Communications: Remarks on Duality, Analytical Torsion and Gaussian Integration in Antisymmetric Field Theories (A Cardona); Multiplicative Anomaly for the e-Regularized Determinant (C Ducourtioux); On Cohomogeneity One Riemannian Manifolds (S M B Kashani); A Differentiable Calculus on the Space of Loops and Connections (M Reiris); Quantum Hall Conductivity and Topological Invariants (A Reyes); Determinant of the Dirac Operator Over the Interval [0, ] (F Torres-Ardila). Readership: Mathematicians and physicists."




Geometric and Topological Methods for Quantum Field Theory


Book Description

A unique presentation of modern geometric methods in quantum field theory for researchers and graduate students in mathematics and physics.




Lectures on Field Theory and Topology


Book Description

These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.




Geometric and Topological Methods for Quantum Field Theory


Book Description

Aimed at graduate students in physics and mathematics, this book provides an introduction to recent developments in several active topics at the interface between algebra, geometry, topology and quantum field theory. The first part of the book begins with an account of important results in geometric topology. It investigates the differential equation aspects of quantum cohomology, before moving on to noncommutative geometry. This is followed by a further exploration of quantum field theory and gauge theory, describing AdS/CFT correspondence, and the functional renormalization group approach to quantum gravity. The second part covers a wide spectrum of topics on the borderline of mathematics and physics, ranging from orbifolds to quantum indistinguishability and involving a manifold of mathematical tools borrowed from geometry, algebra and analysis. Each chapter presents introductory material before moving on to more advanced results. The chapters are self-contained and can be read independently of the rest.







Symplectic Geometry and Topology


Book Description

Symplectic geometry has its origins as a geometric language for classical mechanics. But it has recently exploded into an independent field interconnected with many other areas of mathematics and physics. The goal of the IAS/Park City Mathematics Institute Graduate Summer School on Symplectic Geometry and Topology was to give an intensive introduction to these exciting areas of current research. Included in this proceedings are lecture notes from the following courses: Introductionto Symplectic Topology by D. McDuff; Holomorphic Curves and Dynamics in Dimension Three by H. Hofer; An Introduction to the Seiberg-Witten Equations on Symplectic Manifolds by C. Taubes; Lectures on Floer Homology by D. Salamon; A Tutorial on Quantum Cohomology by A. Givental; Euler Characteristicsand Lagrangian Intersections by R. MacPherson; Hamiltonian Group Actions and Symplectic Reduction by L. Jeffrey; and Mechanics: Symmetry and Dynamics by J. Marsden. Information for our distributors: Titles in this series are copublished with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.




Topology, Geometry and Quantum Field Theory


Book Description

The symposium held in honour of the 60th birthday of Graeme Segal brought together leading physicists and mathematicians. Its topics were centred around string theory, M-theory, and quantum gravity on the one hand, and K-theory, elliptic cohomology, quantum cohomology and string topology on the other. Geometry and quantum physics developed in parallel since the recognition of the central role of non-abelian gauge theory in elementary particle physics in the late seventies and the emerging study of super-symmetry and string theory. With its selection of survey and research articles these proceedings fulfil the dual role of reporting on developments in the field and defining directions for future research. For the first time Graeme Segal's manuscript 'The definition of Conformal Field Theory' is published, which has been greatly influential over more than ten years. An introduction by the author puts it into the present context.




Geometric and Algebraic Topological Methods in Quantum Mechanics


Book Description

In the last decade, the development of new ideas in quantum theory, including geometric and deformation quantization, the non-Abelian Berry''s geometric factor, super- and BRST symmetries, non-commutativity, has called into play the geometric techniques based on the deep interplay between algebra, differential geometry and topology. The book aims at being a guide to advanced differential geometric and topological methods in quantum mechanics. Their main peculiarity lies in the fact that geometry in quantum theory speaks mainly the algebraic language of rings, modules, sheaves and categories. Geometry is by no means the primary scope of the book, but it underlies many ideas in modern quantum physics and provides the most advanced schemes of quantization.




Factorization Algebras in Quantum Field Theory


Book Description

This first volume develops factorization algebras with a focus upon examples exhibiting their use in field theory, which will be useful for researchers and graduates.




Noncommutative Geometry, Quantum Fields and Motives


Book Description

The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.