Geometrical Relationships of Macroscopic Nuclear Physics


Book Description

The aim of this book is to provide a single reference source for the wealth of geometrical formulae and relationships that have proven useful in the descrip tion of atomic nuclei and nuclear processes. While many of the sections may be useful to students and instructors it is not a text book but rather a reference book for experimentalists and theoreticians working in this field. In addition the authors have avoided critical assessment of the material presented except, of course, by variations in emphasis. The whole field of macroscopic (or Liquid Drop Model) nuclear physics has its origins in such early works as [Weizsacker 35] and [Bohr 39]. It continued to grow because of its success in explaining collective nuclear excitations [Bohr 52] and fission (see the series of papers culminating in [Cohen 62]). These develop ments correspond to the first maximum in the histogram below, showing the distribution by year of the articles cited in our Bibliography. After the Liquid Drop Model had been worked out in some detail the development of the Struti nsky approach [Strutinsky 68] (which associates single particle contributions to the binding energy with the shape of the nucleus) gave new life to the field. The growth of interest in heavy-ion reaction studies has also contributed.




Acta Physica Polonica


Book Description




Physics and Chemistry of Fission


Book Description

Contents: Fission Fragment Distributions: Experiment and Theory -- Fission Barriers, Fission Channels, Fission Valleys; Fragment Charge Distributions in Low Energy Fission; Double-Energy, Double-Velocity Measurement of Fission Fragments from Thermal Neutron Induced Fission; Odd-Even Neutron and Proton Effects in Low Energy Nuclear Fission; Energy Balance in MeV Neutron Induced Fission; Formation of the Fragment Mass and Energy Distributions in Fission of Nuclei Lighter than Radium; A New Approach to Determine Elemental Yield, Charge Polarisation and Odd-even Effects in Fission; Fundamental Fission Problems -- Dissipation and Friction in Nuclear Fission; Influence of Diabaticity on Fission Fragment Mass Asymmetry; Space Parity Violation in Nuclear Fission.




Physics Briefs


Book Description




Nuclear Fission


Book Description

This book provides advanced students and postdocs, as well as current practitioners of any field of nuclear physics involving fission an understanding of the nuclear fission process. Key topics covered are: fission cross sections, fission fragment yields, neutron and gamma emission from fission and key nuclear technologies and applications where fission plays an important role. It addresses both fundamental aspects of the fission process and fission-based technologies including combining quantitative and microscopic modeling.




Handbook of Nuclear Physics


Book Description

This handbook is a comprehensive, systematic source of modern nuclear physics. It aims to summarize experimental and theoretical discoveries and an understanding of unstable nuclei and their exotic structures, which were opened up by the development of radioactive ion (RI) beam in the late 1980s. The handbook comprises three major parts. In the first part, the experiments and measured facts are well organized and reviewed. The second part summarizes recognized theories to explain the experimental facts introduced in the first part. Reflecting recent synergistic progress involving both experiment and theory, the chapters both parts are mutually related. The last part focuses on cosmo-nuclear physics—one of the mainstream subjects in modern nuclear physics. Those comprehensive topics are presented concisely. Supported by introductory reviews, all chapters are designed to present their topics in a manner accessible to readers at the graduate level. The book therefore serves as a valuable source for beginners as well, helping them to learn modern nuclear physics.




The Physics of Warm Nuclei


Book Description

This book offers a comprehensive survey of basic elements of nuclear dynamics at low energies and discusses similarities to mesoscopic systems. It addresses systems with finite excitations of their internal degrees of freedom, so that their collective motion exhibits features typical for transport processes in small and isolated systems. The importance of quantum aspects is examined with respect to both the microscopic damping mechanism and the nature of the transport equations. The latter must account for the fact that the collective motion is self-sustained. This implies highly nonlinear couplings between internal and collective degrees of freedom —- different to assumptions made in treatments known in the literature. A critical discussion of the use of thermal concepts is presented. The book can be considered self-contained. It presents existing models, theories and theoretical tools, both from nuclear physics and other fields, which are relevant to an understanding of the observed physical phenomena.




Relativistic Electronic Structure Theory - Fundamentals


Book Description

The first volume of this two part series is concerned with the fundamental aspects of relativistic quantum theory, outlining the enormous progress made in the last twenty years in this field. The aim was to create a book such that researchers who become interested in this exciting new field find it useful as a textbook, and do not have to rely on a rather large number of specialized papers published in this area.·No title is currently available that deals with new developments in relativistic quantum electronic structure theory·Interesting and relevant to graduate students in chemistry and physics as well as to all researchers in the field of quantum chemistry·As treatment of heavy elements becomes more important, there will be a constant demand for this title




Introductory Nuclear Physics


Book Description

This book is a comprehensive balanced and up-to-date introduction to nuclear physics that describes the experiments made to study nuclear reactions and nuclear structure, and the theories and models that have been developed to understand the properties of nucleic and their interactions. After a historical introduction, there are chapters on nuclear accelerators and detectors, elementary particles, nuclear forces, nuclear reaction theory, nuclear models, nuclear and heavy ion reactions, nuclear astrophysics and nuclear reactors. While primarily aimed at undergraduates it will also serve as a reference for graduate students and professional nuclear physicists.




Nucleon Correlations in Nuclei


Book Description

In recent years there has been growing interest in the nucleon-nucleon correl ations inside nuclei. In many respects the motions of the nucleons can be very well described by an overall mean field, so that the motion of each nucleon is governed by the mean field due to all the other nucleons. This concept underlies the Fermi-gas, Hartree-Fock and shell models and has enabled a range of nuclear properties to be calculated, often to surprising accuracy. It gradually became clear, however, that these mean-field models are limited by the effects due to the very strong interactions between the nucleons that occur at short distances; these are the short-range correlations. They are responsible for instance for the high-momentum components in the nucleon momentum dis tribution, and prevent the simultaneous description of the nuclear density and momentum distributions by the same mean field. It thus becomes necessary to develop methods for including the effects of nucleon correlations in nuclei, and these are the main subject of this book. Some related problems of nuclear structure were discussed in an earlier book by the same authors: Nucleon Momentum and Density Distributions in Nuclei (Clarendon Press, Oxford, 1988). The main aim of that book was to study the effects of nucleon-nucleon correlations, both short-range and tensor, on the nucleon momentum distribution, which is particularly sensitive to these correl ations, and on the nucleon density distribution.