Geometries Of Nature, Living Systems And Human Cognition: New Interactions Of Mathematics With Natural Sciences And Humanities


Book Description

The collection of papers forming this volume is intended to provide a deeper study of some mathematical and physical subjects which are at the core of recent developments in the natural and living sciences. The book explores some far-reaching interfaces where mathematics, theoretical physics, and natural sciences seem to interact profoundly. The main goal is to show that an accomplished movement of geometrisation has enabled the discovery of a great variety of amazing structures and behaviors in physical reality and in living matter. The diverse group of expert mathematicians, physicists and natural scientists present numerous new results and original ideas, methods and techniques. Both academic and interdisciplinary, the book investigates a number of important connections between mathematics, theoretical physics and natural sciences including biology.




Complexity and Emergence


Book Description

This book includes contributions about mathematics, physics, philosophy of science, economics and finance and resulted from the Summer School “Complexity and Emergence: Ideas, Methods, with a Special Attention to Economics and Finance” held in Lake Como School of Advanced Studies, on 22–27 July 2018. The aim of the book is to provide useful instruments from the theory of complex systems, both on the theoretical level and the methodological ones, profiting from knowledge and insights from leading experts of different communities. It moves from the volume editors' conviction that to achieve progress in understanding socio-economical as well as ecological problems of our complex word such preparation is needed, together with a critical reconsideration of our basic scientific and economical approach. The potential readers are primarily master and doctorate students of mathematics, information sciences, theoretical physics and economics, as well as research workers in those areas, who want to enlarge their spectrum of knowledge towards the area of complexity and emergence. Since ideas and methods of the theory of complex systems also apply to other areas (from engineering and architecture to biology and medicine, e.g.), students and research workers from those areas will also profit from this book.




Philosophical and Scientific Perspectives on Downward Causation


Book Description

Downward causation plays a fundamental role in many theories of metaphysics and philosophy of mind. It is strictly connected with many topics in philosophy, including but not limited to: emergence, mental causation, the nature of causation, the nature of causal powers and dispositions, laws of nature, and the possibility of ontological and epistemic reductions. Philosophical and Scientific Perspectives on Downward Causation brings together experts from different fields—including William Bechtel, Stewart Clark and Tom Lancaster, Carl Gillett, John Heil, Robin F. Hendry, Max Kistler, Stephen Mumford and Rani Lill Anjum —who delve into classic and unexplored lines of philosophical inquiry related to downward causation. It critically assesses the possibility of downward causation given different ontological assumptions and explores the connection between downward causation and the metaphysics of causation and dispositions. Finally, it presents different cases of downward causation in empirical fields such as physics, chemistry, biology and the neurosciences. This volume is both a useful introduction and a collection of original contributions on this fascinating and hotly debated philosophical topic.




Fractal Geometry, Complex Dimensions and Zeta Functions


Book Description

Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Throughout Geometry, Complex Dimensions and Zeta Functions, Second Edition, new results are examined and a new definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. The new final chapter discusses several new topics and results obtained since the publication of the first edition.




When Form Becomes Substance


Book Description

This interdisciplinary volume collects contributions from experts in their respective fields with as common theme diagrams. Diagrams play a fundamental role in the mathematical visualization and philosophical analysis of forms in space. Some of the most interesting and profound recent developments in contemporary sciences, whether in topology, geometry, dynamic systems theory, quantum field theory or string theory, have been made possible by the introduction of new types of diagrams, which, in addition to their essential role in the discovery of new classes of spaces and phenomena, have contributed to enriching and clarifying the meaning of the operations, structures and properties that are at the heart of these spaces and phenomena. The volume gives a closer look at the scope and the nature of diagrams as constituents of mathematical and physical thought, their function in contemporary artistic work, and appraise, in particular, the actual importance of the diagrams of knots, of braids, of fields, of interaction, of strings in topology and geometry, in quantum physics and in cosmology, but also in theory of perception, in plastic arts and in philosophy. The editors carefully curated this volume to be an inspiration to students and researchers in philosophy, phenomenology, mathematics and the sciences, as well as artists, musicians and the general interested audience.




What is Geometry?


Book Description




The Quantum Vacuum


Book Description

A vacuum, classically understood, contains nothing. The quantum vacuum, on the other hand, is a seething cauldron of nothingness: particle pairs going in and out of existence continuously and rapidly while exerting influence over an enormous range of scales. Acclaimed mathematical physicist and natural philosopher Luciano Boi expounds the quantum vacuum, exploring the meaning of nothingness and its relationship with physical reality. Boi first provides a deep analysis of the interaction between geometry and physics at the quantum level. He next describes the relationship between the microscopic and macroscopic structures of the world. In so doing, Boi sheds light on the very nature of the universe, stressing in an original and profound way the relationship between quantum geometry and the internal symmetries underlying the behavior of matter and the interactions of forces. Beyond the physics and mathematics of the quantum vacuum, Boi offers a profoundly philosophical interpretation of the concept. Plato and Aristotle did not believe a vacuum was possible. How could nothing be something, they asked? Boi traces the evolution of the quantum vacuum from an abstract concept in ancient Greece to its fundamental role in quantum field theory and string theory in modern times. The quantum vacuum is a complex entity, one essential to understanding some of the most intriguing issues in twentieth-century physics, including cosmic singularity, dark matter and energy, and the existence of the Higgs boson particle. Boi explains with simple clarity the relevant theories and fundamental concepts of the quantum vacuum. Theoretical, mathematical, and particle physicists, as well as researchers and students of the history and philosophy of physics, will find The Quantum Vacuum to be a stimulating and engaging primer on the topic.




In Search of the Riemann Zeros


Book Description

Formulated in 1859, the Riemann Hypothesis is the most celebrated and multifaceted open problem in mathematics. In essence, it states that the primes are distributed as harmoniously as possible--or, equivalently, that the Riemann zeros are located on a single vertical line, called the critical line.




Encyclopedia of Mathematical Physics


Book Description

The Encyclopedia of Mathematical Physics provides a complete resource for researchers, students and lecturers with an interest in mathematical physics. It enables readers to access basic information on topics peripheral to their own areas, to provide a repository of the core information in the area that can be used to refresh the researcher's own memory banks, and aid teachers in directing students to entries relevant to their course-work. The Encyclopedia does contain information that has been distilled, organised and presented as a complete reference tool to the user and a landmark to the body of knowledge that has accumulated in this domain. It also is a stimulus for new researchers working in mathematical physics or in areas using the methods originating from work in mathematical physics by providing them with focused high quality background information. Editorial Board: Jean-Pierre Françoise, Université Pierre et Marie Curie, Paris, France Gregory L. Naber, Drexel University, Philadelphia, PA, USA Tsou Sheung Tsun, University of Oxford, UK Also available online via ScienceDirect (2006) - featuring extensive browsing, searching, and internal cross-referencing between articles in the work, plus dynamic linking to journal articles and abstract databases, making navigation flexible and easy.




Mathematical Reviews


Book Description