Book Description
http://www.worldscientific.com/worldscibooks/10.1142/4122
Author : F. Defever
Publisher : World Scientific
Page : 256 pages
File Size : 40,88 MB
Release : 1999
Category : Mathematics
ISBN : 9789810238971
http://www.worldscientific.com/worldscibooks/10.1142/4122
Author : Richard S. Palais
Publisher : Springer
Page : 276 pages
File Size : 25,17 MB
Release : 2006-11-14
Category : Mathematics
ISBN : 3540459960
Author : Bang-Yen Chen
Publisher : Courier Dover Publications
Page : 193 pages
File Size : 34,20 MB
Release : 2019-06-12
Category : Mathematics
ISBN : 0486832783
The first two chapters of this frequently cited reference provide background material in Riemannian geometry and the theory of submanifolds. Subsequent chapters explore minimal submanifolds, submanifolds with parallel mean curvature vector, conformally flat manifolds, and umbilical manifolds. The final chapter discusses geometric inequalities of submanifolds, results in Morse theory and their applications, and total mean curvature of a submanifold. Suitable for graduate students and mathematicians in the area of classical and modern differential geometries, the treatment is largely self-contained. Problems sets conclude each chapter, and an extensive bibliography provides background for students wishing to conduct further research in this area. This new edition includes the author's corrections.
Author : Leopold Verstraelen
Publisher : World Scientific
Page : 247 pages
File Size : 47,25 MB
Release : 1999-07-22
Category : Mathematics
ISBN : 9814494704
Contents:Affine Bibliography 1998 (T Binder et al.)Contact Metric R-Harmonic Manifolds (K Arslan & C Murathan)Local Classification of Centroaffine Tchebychev Surfaces with Constant Curvature Metric (T Binder)Hypersurfaces in Space Forms with Some Constant Curvature Functions (F Brito et al.)Some Relations Between a Submanifold and Its Focal Set (S Carter & A West)On Manifolds of Pseudosymmetric Type (F Defever et al.)Hypersurfaces with Pseudosymmetric Weyl Tensor in Conformally Flat Manifolds (R Deszcz et al.)Least-Squares Geometrical Fitting and Minimising Functions on Submanifolds (F Dillen et al.)Cubic Forms Generated by Functions on Projectively Flat Spaces (J Leder)Distinguished Submanifolds of a Sasakian Manifold (I Mihai)On the Curvature of Left Invariant Locally Conformally Para-Kählerian Metrics (Z Olszak)Remarks on Affine Variations on the Ellipsoid (M Wiehe)Dirac's Equation, Schrödinger's Equation and the Geometry of Surfaces (T J Willmore)and other papers Readership: Researchers doing differential geometry and topology. Keywords:Proceedings;Geometry;Topology;Valenciennes (France);Lyon (France);Leuven (Belgium);Dedication
Author : M. Salah Baouendi
Publisher : Princeton University Press
Page : 418 pages
File Size : 10,9 MB
Release : 2016-06-02
Category : Mathematics
ISBN : 1400883962
This book presents many of the main developments of the past two decades in the study of real submanifolds in complex space, providing crucial background material for researchers and advanced graduate students. The techniques in this area borrow from real and complex analysis and partial differential equations, as well as from differential, algebraic, and analytical geometry. In turn, these latter areas have been enriched over the years by the study of problems in several complex variables addressed here. The authors, M. Salah Baouendi, Peter Ebenfelt, and Linda Preiss Rothschild, include extensive preliminary material to make the book accessible to nonspecialists. One of the most important topics that the authors address here is the holomorphic extension of functions and mappings that satisfy the tangential Cauchy-Riemann equations on real submanifolds. They present the main results in this area with a novel and self-contained approach. The book also devotes considerable attention to the study of holomorphic mappings between real submanifolds, and proves finite determination of such mappings by their jets under some optimal assumptions. The authors also give a thorough comparison of the various nondegeneracy conditions for manifolds and mappings and present new geometric interpretations of these conditions. Throughout the book, Cauchy-Riemann vector fields and their orbits play a central role and are presented in a setting that is both general and elementary.
Author : Werner Ballmann
Publisher : Birkhäuser
Page : 174 pages
File Size : 37,44 MB
Release : 2018-07-18
Category : Mathematics
ISBN : 3034809832
This book provides an introduction to topology, differential topology, and differential geometry. It is based on manuscripts refined through use in a variety of lecture courses. The first chapter covers elementary results and concepts from point-set topology. An exception is the Jordan Curve Theorem, which is proved for polygonal paths and is intended to give students a first glimpse into the nature of deeper topological problems. The second chapter of the book introduces manifolds and Lie groups, and examines a wide assortment of examples. Further discussion explores tangent bundles, vector bundles, differentials, vector fields, and Lie brackets of vector fields. This discussion is deepened and expanded in the third chapter, which introduces the de Rham cohomology and the oriented integral and gives proofs of the Brouwer Fixed-Point Theorem, the Jordan-Brouwer Separation Theorem, and Stokes's integral formula. The fourth and final chapter is devoted to the fundamentals of differential geometry and traces the development of ideas from curves to submanifolds of Euclidean spaces. Along the way, the book discusses connections and curvature--the central concepts of differential geometry. The discussion culminates with the Gauß equations and the version of Gauß's theorema egregium for submanifolds of arbitrary dimension and codimension. This book is primarily aimed at advanced undergraduates in mathematics and physics and is intended as the template for a one- or two-semester bachelor's course.
Author : Ana Cannas da Silva
Publisher : Springer
Page : 240 pages
File Size : 31,66 MB
Release : 2004-10-27
Category : Mathematics
ISBN : 354045330X
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.
Author : John Willard Milnor
Publisher : Princeton University Press
Page : 80 pages
File Size : 34,32 MB
Release : 1997-12-14
Category : Mathematics
ISBN : 9780691048338
This elegant book by distinguished mathematician John Milnor, provides a clear and succinct introduction to one of the most important subjects in modern mathematics. Beginning with basic concepts such as diffeomorphisms and smooth manifolds, he goes on to examine tangent spaces, oriented manifolds, and vector fields. Key concepts such as homotopy, the index number of a map, and the Pontryagin construction are discussed. The author presents proofs of Sard's theorem and the Hopf theorem.
Author : Michael Davis
Publisher : Princeton University Press
Page : 601 pages
File Size : 23,60 MB
Release : 2008
Category : Mathematics
ISBN : 0691131384
The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book. The book explains a theorem of Moussong that demonstrates that a polyhedral metric on this cell complex is nonpositively curved, meaning that Coxeter groups are "CAT(0) groups." The book describes the reflection group trick, one of the most potent sources of examples of aspherical manifolds. And the book discusses many important topics in geometric group theory and topology, including Hopf's theory of ends; contractible manifolds and homology spheres; the Poincaré Conjecture; and Gromov's theory of CAT(0) spaces and groups. Finally, the book examines connections between Coxeter groups and some of topology's most famous open problems concerning aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer conjectures.
Author : Victor Guillemin
Publisher : American Mathematical Soc.
Page : 242 pages
File Size : 50,96 MB
Release : 2010
Category : Mathematics
ISBN : 0821851934
Differential Topology provides an elementary and intuitive introduction to the study of smooth manifolds. In the years since its first publication, Guillemin and Pollack's book has become a standard text on the subject. It is a jewel of mathematical exposition, judiciously picking exactly the right mixture of detail and generality to display the richness within. The text is mostly self-contained, requiring only undergraduate analysis and linear algebra. By relying on a unifying idea--transversality--the authors are able to avoid the use of big machinery or ad hoc techniques to establish the main results. In this way, they present intelligent treatments of important theorems, such as the Lefschetz fixed-point theorem, the Poincaré-Hopf index theorem, and Stokes theorem. The book has a wealth of exercises of various types. Some are routine explorations of the main material. In others, the students are guided step-by-step through proofs of fundamental results, such as the Jordan-Brouwer separation theorem. An exercise section in Chapter 4 leads the student through a construction of de Rham cohomology and a proof of its homotopy invariance. The book is suitable for either an introductory graduate course or an advanced undergraduate course.