Geometry Essentials For Dummies


Book Description

Geometry Essentials For Dummies (9781119590446) was previously published as Geometry Essentials For Dummies (9781118068755). While this version features a new Dummies cover and design, the content is the same as the prior release and should not be considered a new or updated product. Just the critical concepts you need to score high in geometry This practical, friendly guide focuses on critical concepts taught in a typical geometry course, from the properties of triangles, parallelograms, circles, and cylinders, to the skills and strategies you need to write geometry proofs. Geometry Essentials For Dummies is perfect for cramming or doing homework, or as a reference for parents helping kids study for exams. Get down to the basics — get a handle on the basics of geometry, from lines, segments, and angles, to vertices, altitudes, and diagonals Conquer proofs with confidence — follow easy-to-grasp instructions for understanding the components of a formal geometry proof Take triangles in strides — learn how to take in a triangle's sides, analyze its angles, work through an SAS proof, and apply the Pythagorean Theorem Polish up on polygons — get the lowdown on quadrilaterals and other polygons: their angles, areas, properties, perimeters, and much more




Essentials of Geometry for College Students


Book Description

This textbook is designed to provide students with the sound foundation in geometry that is necessary to pursue further courses in college mathematics. It is written for college students who have no previous experience with plane Euclidean geometry and for those who need a refresher in the subject.




Essential Geometry


Book Description

This no-nonsense guide provides students and self-learners with a clear and readable study of geometry's most important ideas. Tim Hill's distraction-free approach combines decades of tutoring experience with the proven methods of his Russian math teachers. The result: learn in a few days what conventional schools stretch into months. Covers classical and analytic geometry. Teaches general principles that can be applied to a wide variety of problems. Avoids the mindless and excessive routine computations that characterize conventional textbooks. Treats geometry as a logically coherent discipline, not as a disjointed collection of techniques. Restores proofs to their proper place to remove doubt, convey insight, and encourage precise logical thinking. Omits digressions, excessive formalities, and repetitive exercises. Includes problems (with solutions) that extend your knowledge rather than merely reinforce it. Contents 1. Triangles 2. Circles 3. Cylinders 4. Cones 5. Spheres 6. Analytic Geometry 7. Solutions 8. Geometry Cheat Sheet About the Author Tim Hill is a statistician living in Boulder, Colorado. He holds degrees in mathematics and statistics from Stanford University and the University of Colorado. Tim has written self-teaching guides for algebra, trigonometry, geometry, precalculus, advanced precalculus, permutations and combinations, debt, mortgages, and Excel pivot tables. When he's not crunching numbers, Tim climbs rocks, hikes canyons, and avoids malls.




Fast Track: Geometry


Book Description

GET UP TO SPEED WITH FAST TRACK: GEOMETRY! Covering the most important material taught in high school geometry classes, this essential review book gets readers on the fast track to class success, with critical information presented in an easy-to-follow quick-study format! Inside this book, you'll find: • Clear, concise summaries of the most important concepts, formulas, and geometric skills • Diagrams, charts, and graphs for quick visual reference • Easy-to-follow content organization and illustrations With its friendly, straightforward approach and a clean, colorful modern design crafted to appeal to visual learners, this guidebook is perfect for catching up in class or getting ahead on exam review. Topics covered in Fast Track: Geometry include: • Key terms • Angles • Polygons • Circles • Congruence and similarity • Constructions • Transformations • Trigonometry • Three-dimensional figures • Reasoning and proofs • Perimeter, area, and volume ... and more!




Analytic Geometry


Book Description




Developing Essential Understanding of Geometry for Teaching Mathematics in Grades 9-12


Book Description

Why does it matter whether we state definitions carefully when we all know what particular geometric figures look like? What does it mean to say that a reflection is a transformation—a function? How does the study of transformations and matrices in high school connect with later work with vector spaces in linear algebra? How much do you know… and how much do you need to know? Helping your students develop a robust understanding of geometry requires that you understand this mathematics deeply. But what does that mean? This book focuses on essential knowledge for teachers about geometry. It is organised around four big ideas, supported by multiple smaller, interconnected ideas—essential understandings. Taking you beyond a simple introduction to geometry, the book will broaden and deepen your mathematical understanding of one of the most challenging topics for students—and teachers. It will help you engage your students, anticipate their perplexities, avoid pitfalls, and dispel misconceptions. You will also learn to develop appropriate tasks, techniques, and tools for assessing students’ understanding of the topic. Focus on the ideas that you need to understand thoroughly to teach confidently. Move beyond the mathematics you expect your students to learn. Students who fail to get a solid grounding in pivotal concepts struggle in subsequent work in mathematics and related disciplines. By bringing a deeper understanding to your teaching, you can help students who don’t get it the first time by presenting the mathematics in multiple ways. The Essential Understanding Series addresses topics in school mathematics that are critical to the mathematical development of students but are often difficult to teach. Each book in the series gives an overview of the topic, highlights the differences between what teachers and students need to know, examines the big ideas and related essential understandings, reconsiders the ideas presented in light of connections with other mathematical ideas, and includes questions for readers’ reflection.




Fundamental Concepts of Geometry


Book Description

Demonstrates relationships between different types of geometry. Provides excellent overview of the foundations and historical evolution of geometrical concepts. Exercises (no solutions). Includes 98 illustrations.




Essentials of Tropical Combinatorics


Book Description

The goal of this book is to explain, at the graduate student level, connections between tropical geometry and optimization. Building bridges between these two subject areas is fruitful in two ways. Through tropical geometry optimization algorithms become applicable to questions in algebraic geometry. Conversely, looking at topics in optimization through the tropical geometry lens adds an additional layer of structure. The author covers contemporary research topics that are relevant for applications such as phylogenetics, neural networks, combinatorial auctions, game theory, and computational complexity. This self-contained book grew out of several courses given at Technische Universität Berlin and elsewhere, and the main prerequisite for the reader is a basic knowledge in polytope theory. It contains a good number of exercises, many examples, beautiful figures, as well as explicit tools for computations using $texttt{polymake}$.




Fundamentals of Geometry Construction


Book Description

The textbook provides both beginner and experienced CAD users with the math behind the CAD. The geometry tools introduced here help the reader exploit commercial CAD software to its fullest extent. In fact, the book enables the reader to go beyond what CAD software packages offer in their menus. Chapter 1 summarizes the basic Linear and Vector Algebra pertinent to vectors in 3D, with some novelties: the 2D form of the vector product and the manipulation of “larger" matrices and vectors by means of block-partitioning of larger arrays. In chapter 2 the relations among points, lines and curves in the plane are revised accordingly; the difference between curves representing functions and their geometric counterparts is emphasized. Geometric objects in 3D, namely, points, planes, lines and surfaces are the subject of chapter 3; of the latter, only quadrics are studied, to keep the discussion at an elementary level, but the interested reader is guided to the literature on splines. The concept of affine transformations, at the core of CAD software, is introduced in chapter 4, which includes applications of these transformations to the synthesis of curves and surfaces that would be extremely cumbersome to produce otherwise. The book, catering to various disciplines such as engineering, graphic design, animation and architecture, is kept discipline-independent, while including examples of interest to the various disciplines. Furthermore, the book can be an invaluable complement to undergraduate lectures on CAD.




Proof in Geometry


Book Description

This single-volume compilation of 2 books explores the construction of geometric proofs. It offers useful criteria for determining correctness and presents examples of faulty proofs that illustrate common errors. 1963 editions.