Geometry of Banach Spaces - Selected Topics
Author : J. Diestel
Publisher : Springer
Page : 298 pages
File Size : 26,35 MB
Release : 2006-11-14
Category : Mathematics
ISBN : 3540379134
Author : J. Diestel
Publisher : Springer
Page : 298 pages
File Size : 26,35 MB
Release : 2006-11-14
Category : Mathematics
ISBN : 3540379134
Author : Pandelis Dodos
Publisher : Springer Science & Business Media
Page : 180 pages
File Size : 49,48 MB
Release : 2010-05-10
Category : Mathematics
ISBN : 3642121527
This volume deals with problems in the structure theory of separable infinite-dimensional Banach spaces, with a central focus on universality problems. This topic goes back to the beginnings of the field and appears in Banach's classical monograph. The novelty of the approach lies in the fact that the answers to a number of basic questions are based on techniques from Descriptive Set Theory. Although the book is oriented on proofs of several structural theorems, in the main text readers will also find a detailed exposition of numerous “intermediate” results which are interesting in their own right and have proven to be useful in other areas of Functional Analysis. Moreover, several well-known results in the geometry of Banach spaces are presented from a modern perspective.
Author : Fernando Albiac
Publisher : Springer
Page : 512 pages
File Size : 15,7 MB
Release : 2016-07-19
Category : Mathematics
ISBN : 3319315579
This text provides the reader with the necessary technical tools and background to reach the frontiers of research without the introduction of too many extraneous concepts. Detailed and accessible proofs are included, as are a variety of exercises and problems. The two new chapters in this second edition are devoted to two topics of much current interest amongst functional analysts: Greedy approximation with respect to bases in Banach spaces and nonlinear geometry of Banach spaces. This new material is intended to present these two directions of research for their intrinsic importance within Banach space theory, and to motivate graduate students interested in learning more about them. This textbook assumes only a basic knowledge of functional analysis, giving the reader a self-contained overview of the ideas and techniques in the development of modern Banach space theory. Special emphasis is placed on the study of the classical Lebesgue spaces Lp (and their sequence space analogues) and spaces of continuous functions. The authors also stress the use of bases and basic sequences techniques as a tool for understanding the isomorphic structure of Banach spaces. From the reviews of the First Edition: "The authors of the book...succeeded admirably in creating a very helpful text, which contains essential topics with optimal proofs, while being reader friendly... It is also written in a lively manner, and its involved mathematical proofs are elucidated and illustrated by motivations, explanations and occasional historical comments... I strongly recommend to every graduate student who wants to get acquainted with this exciting part of functional analysis the instructive and pleasant reading of this book..."—Gilles Godefroy, Mathematical Reviews
Author : Antonio J. Guirao
Publisher : Springer
Page : 0 pages
File Size : 44,24 MB
Release : 2016-08-09
Category : Mathematics
ISBN : 9783319335711
This is an collection of some easily-formulated problems that remain open in the study of the geometry and analysis of Banach spaces. Assuming the reader has a working familiarity with the basic results of Banach space theory, the authors focus on concepts of basic linear geometry, convexity, approximation, optimization, differentiability, renormings, weak compact generating, Schauder bases and biorthogonal systems, fixed points, topology and nonlinear geometry. The main purpose of this work is to help in convincing young researchers in Functional Analysis that the theory of Banach spaces is a fertile field of research, full of interesting open problems. Inside the Banach space area, the text should help expose young researchers to the depth and breadth of the work that remains, and to provide the perspective necessary to choose a direction for further study. Some of the problems are longstanding open problems, some are recent, some are more important and some are only local problems. Some would require new ideas, some may be resolved with only a subtle combination of known facts. Regardless of their origin or longevity, each of these problems documents the need for further research in this area.
Author : Marian Fabian
Publisher : Springer Science & Business Media
Page : 455 pages
File Size : 22,45 MB
Release : 2013-04-17
Category : Mathematics
ISBN : 1475734808
This book introduces the basic principles of functional analysis and areas of Banach space theory that are close to nonlinear analysis and topology. The text can be used in graduate courses or for independent study. It includes a large number of exercises of different levels of difficulty, accompanied by hints.
Author : I. Cioranescu
Publisher : Springer Science & Business Media
Page : 274 pages
File Size : 22,40 MB
Release : 2012-12-06
Category : Mathematics
ISBN : 9400921217
One service mathematics has rendered the 'Et moi ... - si Javait so comment en revenir. je n'y serais point alle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. Eric T. Bell able to do something with it. o. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. AIl arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
Author :
Publisher : Elsevier
Page : 1017 pages
File Size : 26,12 MB
Release : 2001-08-15
Category : Mathematics
ISBN : 0080532802
The Handbook presents an overview of most aspects of modernBanach space theory and its applications. The up-to-date surveys, authored by leading research workers in the area, are written to be accessible to a wide audience. In addition to presenting the state of the art of Banach space theory, the surveys discuss the relation of the subject with such areas as harmonic analysis, complex analysis, classical convexity, probability theory, operator theory, combinatorics, logic, geometric measure theory, and partial differential equations. The Handbook begins with a chapter on basic concepts in Banachspace theory which contains all the background needed for reading any other chapter in the Handbook. Each of the twenty one articles in this volume after the basic concepts chapter is devoted to one specific direction of Banach space theory or its applications. Each article contains a motivated introduction as well as an exposition of the main results, methods, and open problems in its specific direction. Most have an extensive bibliography. Many articles contain new proofs of known results as well as expositions of proofs which are hard to locate in the literature or are only outlined in the original research papers. As well as being valuable to experienced researchers in Banach space theory, the Handbook should be an outstanding source for inspiration and information to graduate students and beginning researchers. The Handbook will be useful for mathematicians who want to get an idea of the various developments in Banach space theory.
Author : Michel Ledoux
Publisher : Springer Science & Business Media
Page : 493 pages
File Size : 33,78 MB
Release : 2013-03-09
Category : Mathematics
ISBN : 3642202128
Isoperimetric, measure concentration and random process techniques appear at the basis of the modern understanding of Probability in Banach spaces. Based on these tools, the book presents a complete treatment of the main aspects of Probability in Banach spaces (integrability and limit theorems for vector valued random variables, boundedness and continuity of random processes) and of some of their links to Geometry of Banach spaces (via the type and cotype properties). Its purpose is to present some of the main aspects of this theory, from the foundations to the most important achievements. The main features of the investigation are the systematic use of isoperimetry and concentration of measure and abstract random process techniques (entropy and majorizing measures). Examples of these probabilistic tools and ideas to classical Banach space theory are further developed.
Author : Gilles Pisier
Publisher : Cambridge University Press
Page : 270 pages
File Size : 33,28 MB
Release : 1999-05-27
Category : Mathematics
ISBN : 9780521666350
A self-contained presentation of results relating the volume of convex bodies and Banach space geometry.
Author : Terry J. Morrison
Publisher : John Wiley & Sons
Page : 380 pages
File Size : 47,26 MB
Release : 2011-10-14
Category : Mathematics
ISBN : 1118031245
A powerful introduction to one of the most active areas of theoretical and applied mathematics This distinctive introduction to one of the most far-reaching and beautiful areas of mathematics focuses on Banach spaces as the milieu in which most of the fundamental concepts are presented. While occasionally using the more general topological vector space and locally convex space setting, it emphasizes the development of the reader's mathematical maturity and the ability to both understand and "do" mathematics. In so doing, Functional Analysis provides a strong springboard for further exploration on the wide range of topics the book presents, including: * Weak topologies and applications * Operators on Banach spaces * Bases in Banach spaces * Sequences, series, and geometry in Banach spaces Stressing the general techniques underlying the proofs, Functional Analysis also features many exercises for immediate clarification of points under discussion. This thoughtful, well-organized synthesis of the work of those mathematicians who created the discipline of functional analysis as we know it today also provides a rich source of research topics and reference material.