Geotechnical and Geoenvironmental Engineering Handbook


Book Description

Preface. Dedication. List of Figures. List of Tables. List of Contributors. Basic Behavior and Site Characterization. 1. Introduction; R.K. Rowe. 2. Basic Soil Mechanics; P.V. Lade. 3. Engineering Properties of Soils and Typical Correlations; P.V. Lade. 4. Site Characterization; D.E. Becker. 5. Unsaturated Soil Mechanics and Property Assessment; D.G. Fredlund, et al. 6. Basic Rocks Mechanics and Testing; K.Y. Lo, A.M. Hefny. 7. Geosynthetics: Characteristics and Testing; R.M. Koerner, Y.G. Hsuan. 8. Seepage, Drainage and Dewatering; R.W. Loughney. Foundations and Pavements. 9. Shallo.




Geoenvironmental Engineering


Book Description

Geoenvironmental Engineering covers the application of basic geological and hydrological science, including soil and rock mechanics and groundwater hydrology, to any number of different environmental problems. * Includes end-of-chapter summaries, design examples and worked-out numerical problems, and problem questions. * Offers thorough coverage of the role of geotechnical engineering in a wide variety of environmental issues. * Addresses such issues as remediation of in-situ hazardous waste, the monitoring and control of groundwater pollution, and the creation and management of landfills and other above-ground and in-situ waste containment systems.




Fundamentals of Geoenvironmental Engineering


Book Description

Fundamentals of Geoenvironmental Engineering: Understanding Soil, Water, and Pollutant Interaction and Transport examines soil-water-pollutant interaction, including physico-chemical processes that occur when soil is exposed to various contaminants. Soil characteristics relevant to remedial techniques are explored, providing foundations for the correct process selection. Built upon the authors' extensive experience in research and practice, the book updates and expands the content to include current processes and pollutants. The book discusses propagation of soil pollution and soil characteristics relevant to remedial techniques. Practicing geotechnical and environmental engineers can apply the theory and case studies in the book directly to current projects. The book first discusses the stages of economic development and their connections to the sustainability of the environment. Subsequent chapters cover waste and its management, soil systems, soil-water and soil-pollutant interactions, subsurface transport of pollutants, role of groundwater, nano-, micro- and biologic pollutants, soil characteristics that impact pollution diffusion, and potential remediation processes like mechanical, electric, magnetic, hydraulic and dielectric permittivity of soils. - Presents a clear understanding of the propagation of pollutants in soils - Identifies the physico-chemical processes in soils - Covers emerging pollutants (nano-, micro- and biologic contaminants) - Features in-depth coverage of hydraulic, electrical, magnetic and dielectric permittivity characteristics of soils and their impact on remedial technologies




Geoenvironmental Engineering


Book Description

Applies science and engineering principles to the analysis, design, and implementation of technical schemes to characterize, treat, modify, and reuse/store waste and contaminated media. Includes site remediation.




Handbook of Geotechnical Investigation and Design Tables


Book Description

This practical handbook of properties for soils and rock contains, in a concise tabular format, the key issues relevant to geotechnical investigations, assessments and designs in common practice. In addition, there are brief notes on the application of the tables. These data tables are compiled for experienced geotechnical professionals who require a reference document to access key information. There is an extensive database of correlations for different applications. The book should provide a useful bridge between soil and rock mechanics theory and its application to practical engineering solutions. The initial chapters deal with the planning of the geotechnical investigation, the classification of the soil and rock properties and some of the more used testing is then covered. Later chapters show the reliability and correlations that are used to convert that data in the interpretative and assessment phase of the project. The final chapters apply some of these concepts to geotechnical design. This book is intended primarily for practicing geotechnical engineers working in investigation, assessment and design, but should provide a useful supplement for postgraduate courses.




Geotechnical Engineering


Book Description

Written by a leader on the subject, Introduction to Geotechnical Engineering is first introductory geotechnical engineering textbook to cover both saturated and unsaturated soil mechanics. Destined to become the next leading text in the field, this book presents a new approach to teaching the subject, based on fundamentals of unsaturated soils, and extending the description of applications of soil mechanics to a wide variety of topics. This groundbreaking work features a number of topics typically left out of undergraduate geotechnical courses.




Geotechnical Engineering Handbook


Book Description

The Geotechnical Engineering Handbook brings together essential information related to the evaluation of engineering properties of soils, design of foundations such as spread footings, mat foundations, piles, and drilled shafts, and fundamental principles of analyzing the stability of slopes and embankments, retaining walls, and other earth-retaining structures. The Handbook also covers soil dynamics and foundation vibration to analyze the behavior of foundations subjected to cyclic vertical, sliding and rocking excitations and topics addressed in some detail include: environmental geotechnology and foundations for railroad beds.




Geosynthetics and Their Applications


Book Description

Presents topics that are based on field application areas for geosynthetics in civil engineering. This book also includes case histories and practical aspects of the application of geosynthetics, along with developments and references. It is useful for students and engineers in search of approaches to solutions for civil engineering problems.




Correlations of Soil and Rock Properties in Geotechnical Engineering


Book Description

This book presents a one-stop reference to the empirical correlations used extensively in geotechnical engineering. Empirical correlations play a key role in geotechnical engineering designs and analysis. Laboratory and in situ testing of soils can add significant cost to a civil engineering project. By using appropriate empirical correlations, it is possible to derive many design parameters, thus limiting our reliance on these soil tests. The authors have decades of experience in geotechnical engineering, as professional engineers or researchers. The objective of this book is to present a critical evaluation of a wide range of empirical correlations reported in the literature, along with typical values of soil parameters, in the light of their experience and knowledge. This book will be a one-stop-shop for the practising professionals, geotechnical researchers and academics looking for specific correlations for estimating certain geotechnical parameters. The empirical correlations in the forms of equations and charts and typical values are collated from extensive literature review, and from the authors' database.




Geoenvironmental Engineering


Book Description

Why do some contaminants remain in soils indefinitely? How much of a threat do they pose to human health or the environment? The need for effective and economic site decontamination arises daily. Geoenvironmental Engineering: Contaminated Soils, Pollutant Fate, and Mitigation discusses why soils remain contaminated, focusing on the development of the factors, properties, characteristics, and parameters of soils and individual contaminants. Subjects covered include the basic properties of soils affecting accumulation of contaminants, long-term retention of contaminants and their fate, including the development of intermediate products. The author emphasizes the factors, interactions, and mechanisms important in the bonding and partitioning process. He provides the groundwork for determining the fate of pollutants in soils and sediments and their mitigation. Geoenvironmental Engineering: Contaminated Soils, Pollutant Fate, and Mitigation focuses on why soils and sediments remain contaminated, not how they became contaminated in the first place. You will understand why specific contaminants remain in soils and sediments, how much of a threat they pose to human health and the environment, and what steps to take for mitigation. With this information you can determine the extent of the contamination of soils and sediments, how long they will remain a threat, and what methods to use for their remediation.