Glancing Angle Deposition of Thin Films


Book Description

This book provides a highly practical treatment of Glancing Angle Deposition (GLAD), a thin film fabrication technology optimized to produce precise nanostructures from a wide range of materials. GLAD provides an elegant method for fabricating arrays of nanoscale helices, chevrons, columns, and other porous thin film architectures using physical vapour deposition processes such as sputtering or evaporation. The book gathers existing procedures, methodologies, and experimental designs into a single, cohesive volume which will be useful both as a ready reference for those in the field and as a definitive guide for those entering it. It covers: Development and description of GLAD techniques for nanostructuring thin films Properties and characterization of nanohelices, nanoposts, and other porous films Design and engineering of optical GLAD films including fabrication and testing, and chiral films Post-deposition processing and integration to optimize film behaviour and structure Deposition systems and requirements for GLAD fabrication A patent survey, extensive relevant literature, and a survey of GLAD's wide range of material properties and diverse applications.




Glancing Angle Deposition of Thin Films


Book Description

This book provides a highly practical treatment of Glancing Angle Deposition (GLAD), a thin film fabrication technology optimized to produce precise nanostructures from a wide range of materials. GLAD provides an elegant method for fabricating arrays of nanoscale helices, chevrons, columns, and other porous thin film architectures using physical vapour deposition processes such as sputtering or evaporation. The book gathers existing procedures, methodologies, and experimental designs into a single, cohesive volume which will be useful both as a ready reference for those in the field and as a definitive guide for those entering it. It covers: Development and description of GLAD techniques for nanostructuring thin films Properties and characterization of nanohelices, nanoposts, and other porous films Design and engineering of optical GLAD films including fabrication and testing, and chiral films Post-deposition processing and integration to optimize film behaviour and structure Deposition systems and requirements for GLAD fabrication A patent survey, extensive relevant literature, and a survey of GLAD's wide range of material properties and diverse applications.




Handbook of Deposition Technologies for Films and Coatings


Book Description

This 3e, edited by Peter M. Martin, PNNL 2005 Inventor of the Year, is an extensive update of the many improvements in deposition technologies, mechanisms, and applications. This long-awaited revision includes updated and new chapters on atomic layer deposition, cathodic arc deposition, sculpted thin films, polymer thin films and emerging technologies. Extensive material was added throughout the book, especially in the areas concerned with plasma-assisted vapor deposition processes and metallurgical coating applications.




Advanced Strategies in Thin Film Engineering by Magnetron Sputtering


Book Description

Recent years have witnessed the flourishing of numerous novel strategies based on the magnetron sputtering technique aimed at the advanced engineering of thin films, such as HiPIMS, combined vacuum processes, the implementation of complex precursor gases or the inclusion of particle guns in the reactor, among others. At the forefront of these approaches, investigations focused on nanostructured coatings appear today as one of the priorities in many scientific and technological communities: The science behind them appears in most of the cases as a "terra incognita", fascinating both the fundamentalist, who imagines new concepts, and the experimenter, who is able to create and study new films with as of yet unprecedented performances. These scientific and technological challenges, along with the existence of numerous scientific issues that have yet to be clarified in classical magnetron sputtering depositions (e.g., process control and stability, nanostructuration mechanisms, connection between film morphology and properties or upscaling procedures from the laboratory to industrial scales) have motivated us to edit a specialized volume containing the state-of-the art that put together these innovative fundamental and applied research topics. These include, but are not limited to: • Nanostructure-related properties; • Atomistic processes during film growth; • Process control, process stability, and in situ diagnostics; • Fundamentals and applications of HiPIMS; • Thin film nanostructuration phenomena; • Tribological, anticorrosion, and mechanical properties; • Combined procedures based on the magnetron sputtering technique; • Industrial applications; • Devices.




Ellipsometry at the Nanoscale


Book Description

This book presents and introduces ellipsometry in nanoscience and nanotechnology making a bridge between the classical and nanoscale optical behaviour of materials. It delineates the role of the non-destructive and non-invasive optical diagnostics of ellipsometry in improving science and technology of nanomaterials and related processes by illustrating its exploitation, ranging from fundamental studies of the physics and chemistry of nanostructures to the ultimate goal of turnkey manufacturing control. This book is written for a broad readership: materials scientists, researchers, engineers, as well as students and nanotechnology operators who want to deepen their knowledge about both basics and applications of ellipsometry to nanoscale phenomena. It starts as a general introduction for people curious to enter the fields of ellipsometry and polarimetry applied to nanomaterials and progresses to articles by experts on specific fields that span from plasmonics, optics, to semiconductors and flexible electronics. The core belief reflected in this book is that ellipsometry applied at the nanoscale offers new ways of addressing many current needs. The book also explores forward-looking potential applications.




The Materials Science of Thin Films


Book Description

Prepared as a textbook complete with problems after each chapter, specifically intended for classroom use in universities.




Evolution of Thin Film Morphology


Book Description

The focus of this book is on modeling and simulations used in research on the morphological evolution during film growth. The authors emphasize the detailed mathematical formulation of the problem. The book will enable readers themselves to set up a computational program to investigate specific topics of interest in thin film deposition. It will benefit those working in any discipline that requires an understanding of thin film growth processes.




Reactive Sputter Deposition


Book Description

In this valuable work, all aspects of the reactive magnetron sputtering process, from the discharge up to the resulting thin film growth, are described in detail, allowing the reader to understand the complete process. Hence, this book gives necessary information for those who want to start with reactive magnetron sputtering, understand and investigate the technique, control their sputtering process and tune their existing process, obtaining the desired thin films.




Coatings and Thin-Film Technologies


Book Description

The field of coatings and thin-film technologies is rapidly advancing to keep up with new uses for semiconductor, optical, tribological, thermoelectric, solar, security, and smart sensing applications, among others. In this sense, thin-film coatings and structures are increasingly sophisticated with more specific properties, new geometries, large areas, the use of heterogeneous materials and flexible and rigid coating substrates to produce thin-film structures with improved performance and properties in response to new challenges that the industry presents. This book aims to provide the reader with a complete overview of the current state of applications and developments in thin-film technology, discussing applications, health and safety in thin films, and presenting reviews and experimental results of recognized experts in the area of coatings and thin-film technologies.




Sculptured Thin Films


Book Description

Sculptured thin films (STFs) are a class of nanoengineered materials with properties that can be designed and realized in a controllable manner using physical vapor deposition. This text, presented as a course at the SPIE Optical Science and Technology Symposium, couples detailed knowledge of thin-film morphology with the optical response characteristics of STF devices. An accompanying CD contains Mathematica programs for use with the presented formalisms. Thus, readers will learn to design and engineer STF materials and devices for future applications, particularly with optical applications. Graduate students in optics and practicing optical engineers will find the text valuable, as well as those interested in emerging nanotechnologies for optical devices.